

1

2

C8P: DESIGN AND ANALYSIS OF ALGORITHMS

LABORATORY MANUAL

(Course: CC-8)

3

INSTRUCTIONS TO STUDENTS

 Before entering the lab, the student should carry the following things

(MANDATORY)

1. Identity card issued by the college.
2. Class notes
3. Lab observation book

4. Lab Manual

5. Lab Record

 Student must sign in and sign out in the register provided when attending the

lab session without fail.

 Come to the laboratory in time. Students, who are late more than 10 min., will

not be allowed to attend the lab.

 Students need to maintain 80% attendance in lab if not a strict action will be

taken.

 All students must follow a Dress Code while in the laboratory.

 Foods, drinks are NOT allowed.

 All bags must be left at the indicated place.

 Refer to the lab staff if you need any help in using the lab.

 Respect the laboratory and its other users.

 Workspace must be kept clean and tidy after experiment is completed.

 Read the Manual carefully before coming to the laboratory and be sure about

what you are supposed to do.

 Do the experiments as per the instructions given in the manual.

 Copy all the programs to observation which are taught in class before attending

the lab session.

 Students are not supposed to use floppy disks, pen drives without permission of

lab- in charge.

 Lab records need to be submitted on or before the date of submission.

4

List of Assignments:

 WAP to implement Insertion Sort

 WAP to implement Merge Sort

 WAP to implement Heap Sort

 WAP to implement Randomized Quick sort

 WAP to implement Radix Sort

 WAP to implement Breadth-First Search in a graph

 WAP to implement Depth-First Search in a graph

 Write a program to determine the minimum spanning tree of a graph

 Write a program to determine the LCS of two given sequences

 Create a Red-Black Tree and perform following operations on it:

i) Insert a node

ii) Delete a node

5

 WAP to implement Insertion Sort

Program:

#include<stdio.h>

#include<conio.h>

//function definition

void Insertion(int A[],int n)

{

 int i,j,x,count=0;

 for(i=1;i<n;i++)

 {

 j=i-1;

 x=A[i];

 while(j>-1 && A[j]>x)

 {

 A[j+1]=A[j];

 j--;

 count++;

 }

 A[j+1]=x;

 }

 printf("The number of comparisons %d \n",count);

}

int main()

{

int A[100],no,i;

printf("Enter the how many numbers to be sort using insertion sorting

technique: \n");

scanf("%d",&no);

printf("Before sorting the elements are: \n");

 for(i=0;i<no;i++){

 scanf("%d",&A[i]);

 }

 //function call

 Insertion(A,no);

printf("After sorting the elements are: \n");

 for(i=0;i<no;i++)

 printf("%d ",A[i]);

 printf("\n");

 getch();

6

 return 0;

}

Input and Output Section:

Enter the how many numbers to be sort using insertion sorting technique:

20

Before sorting the elements are:

20 23 10 27 56 78 54 01 89 54 453 67 34 567 435 234 21 453 67 58

The number of comparisons 59

After sorting the elements are:

1 10 20 21 23 27 34 54 54 56 58 67 67 78 89 234 435 453 453 567

 WAP to implement Merge Sort

Program:

#include<stdio.h>

#include<conio.h>

void Merge(int A[],int l,int mid,int h)

{

 int i=l,j=mid+1,k=l;

 int B[100];

 while(i<=mid && j<=h)

 {

 if(A[i]<A[j])

 B[k++]=A[i++];

 else

 B[k++]=A[j++];

 }

 for(;i<=mid;i++)

 B[k++]=A[i];

 for(;j<=h;j++)

 B[k++]=A[j];

 for(i=l;i<=h;i++)

 A[i]=B[i];

}

void MergeSort(int A[],int l,int h)

{

 int mid;

 if(l<h)

7

 {

 mid=(l+h)/2;

 MergeSort(A,l,mid);

 MergeSort(A,mid+1,h);

 Merge(A,l,mid,h);

 }

}

int main()

{

int A[100],no,i;

printf("Enter the how many numbers to be sort using Merge sorting

technique: \n");

scanf("%d",&no);

printf("Before sorting the elements are: \n");

 for(i=0;i<no;i++){

 scanf("%d",&A[i]);

 }

 MergeSort(A,0,no-1);

 printf("After sorting the elements are: \n");

 for(i=0;i<no;i++){

 printf("%d ",A[i]);

 }

getch();

 return 0;

}

Input and Output Section:

Enter the how many numbers to be sort using Merge sorting technique:

10

Before sorting the elements are:

10 34 56 78 43 234 89 563 67 56

After sorting the elements are:

10 34 43 56 56 67 78 89 234 563

8

 WAP to implement Heap Sort

Program:

#include <stdio.h>

void Insert(int A[],int n){

 int i=n,temp;

 temp=A[i];

 while(i>1 && temp>A[i/2]){

 A[i]=A[i/2];

 i=i/2;

 }

 A[i]=temp;

}

int Delete(int A[],int n)

{

 int i,j,x,temp,val;

 val=A[1];

 x=A[n];

 A[1]=A[n];

 A[n]=val;

 i=1;

 j=i*2;

 while(j<=n-1){

 if(j<n-1 && A[j+1]>A[j])

 j=j+1;

 if(A[i]<A[j]){

 temp=A[i];

 A[i]=A[j];

 A[j]=temp;

 i=j;

 j=2*j;

 }

 else

 break;

 }

 return val;

}

9

int main() {

 //int H[]={0,10,20,30,25,5,40,35};

 int H[100],no,i;

 printf("Enter the how many elements \n");

 scanf("%d",&no);

 printf("Elements are: \n");

 for(i=1;i<=no;i++){

 scanf("%d",&H[i]);

 }

 printf("Create the Heap elements are: \n");

 for(i=1;i<=no;i++){

 printf(" %d ",H[i]);

 }

 for(i=2;i<=no;i++)

 Insert(H,i);

 printf("\n After the creating heap elements are: \n");

for(i=1;i<=no;i++)

 printf("%d ",H[i]);

 printf("\n");

 for(i=no;i>1;i--)

 {

 Delete(H,i);

 }

 printf("After Deleting the heap sort elements are: \n");

 for(i=1;i<=no;i++)

 printf("%d ",H[i]);

 printf("\n");

 return 0;

}

Input and Output Section:

Enter the how many elements

7

Elements are:

10 20 30 25 5 40 35

Create the Heap elements are:

 10 20 30 25 5 40 35

 After the creating heap elements are:

40 25 35 10 5 20 30

After Deleting the heap sort elements are:

5 10 20 25 30 35 40

10

 WAP to implement Randomized Quick sort

Program:

#include<stdio.h>

#include<conio.h>

#include<limits.h>

void swap(int *x,int *y)

{

 int temp=*x;

 *x=*y;

 *y=temp;

}

int partition(int A[],int l,int h)

{

 int pivot=A[l];

 int i=l,j=h;

 do

 {

 do{i++;}while(A[i]<=pivot);

 do{j--;}while(A[j]>pivot);

 if(i<j)

 swap(&A[i],&A[j]);

 }while(i<j);

 swap(&A[l],&A[j]);

 return j;

}

void QuickSort(int A[],int l,int h)

{

 int j;

 if(l<h)

 {

 j=partition(A,l,h);

 QuickSort(A,l,j);

 QuickSort(A,j+1,h);

 }

}

int main()

{

 int A[100],i,n;

 printf("Enter the how many number to be sort: \n");

11

 scanf("%d",&n);

 printf("Elements are: \n");

 for(i=0;i<n;i++){

 scanf("%d",&A[i]);

 }

 //int A[]={11,13,7,12,16,9,24,5,10,3,INT_MAX},n=11,i;

 printf("Before sorting the elements are: \n");

 for(i=0;i<n;i++)

 printf(" %d ",A[i]);

 QuickSort(A,0,n);

 printf("\n After sorting the elements are: \n");

 for(i=0;i<n;i++)

 printf("%d ",A[i]);

 printf("\n");

 getch();

 return 0;

}

Input and Output Section:

Enter the how many number to be sort:

10

Elements are:

11 13 7 12 16 9 24 5 10 3

Before sorting the elements are:

 11 13 7 12 16 9 24 5 10 3

 After sorting the elements are:

3 5 7 9 10 11 12 13 16 24

 WAP to implement Radix Sort

Program:

#include<iostream>

#include<cmath>

using namespace std;

template <class T>

void Print(T& vec, int n, string s){

 cout << s << ": [" << flush;

 for (int i=0; i<n; i++){

 cout << vec[i] << flush;

 if (i < n-1){

12

 cout << ", " << flush;

 }

 }

 cout << "]" << endl;

}

int Max(int A[], int n){

 int max=-32768;

 for (int i=0;i<n;i++){

 if (A[i]>max){

 max=A[i];

 }

 }

 return max;

}

// Linked List node

class Node{

public:

 int value;

 Node* next;

}*nullptr;

int countDigits(int x){

 int count=0;

 while(x!=0){

 x=x/10;

 count++;

 }

 return count;

}

void initializeBins(Node** p, int n){

 for(int i=0;i<n;i++){

 p[i]=nullptr;

 }

}

void Insert(Node** ptrBins, int value, int idx){

 Node* temp=new Node;

 temp->value=value;

 temp->next=nullptr;

13

 if(ptrBins[idx]==nullptr){

 ptrBins[idx]=temp; // ptrBins[idx] is head ptr

 }

 else {

 Node* p=ptrBins[idx];

 while(p->next!=nullptr){

 p=p->next;

 }

 p->next=temp;

 }

}

int Delete(Node** ptrBins, int idx){

 Node* p=ptrBins[idx]; // ptrBins[idx] is head ptr

 ptrBins[idx]=ptrBins[idx]->next;

 int x=p->value;

 delete p;

 return x;

}

int getBinIndex(int x, int idx){

 return (int)(x/pow(10, idx)) % 10;

}

void RadixSort(int A[], int n){

 int max=Max(A, n);

 int nPass=countDigits(max);

 // Create bins array

 Node** bins=new Node* [10];

 // Initialize bins array with nullptr

 initializeBins(bins, 10);

 // Update bins and A for nPass times

 for (int pass=0;pass<nPass;pass++){

 // Update bins based on A values

 for (int i=0;i<n;i++){

 int binIdx=getBinIndex(A[i], pass);

 Insert(bins,A[i],binIdx);

 }

 // Update A with sorted elements from bin

 int i=0;

 int j=0;

 while(i<10){

 while(bins[i]!=nullptr){

14

 A[j++]=Delete(bins, i);

 }

 i++;

 }

 // Initialize bins with nullptr again

 initializeBins(bins, 10);

 }

 // Delete heap memory

 delete []bins;

}

int main() {

 int A[]={237, 146, 259, 348, 152, 163, 235, 48, 36, 62};

 int n=sizeof(A)/sizeof(A[0]);

 Print(A,n,"\t Before Sort A");

 RadixSort(A,n);

 Print(A,n," After Sorted A");

 return 0;

}

Input and Output Section:

Before Sort A: [237, 146, 259, 348, 152, 163, 235, 48, 36, 62]

 After Sorted A: [36, 48, 62, 146, 152, 163, 235, 237, 259, 348]

15

 WAP to implement Breadth-First Search in a graph

Solution:

 0 1 2 3 4 5 6

 0

 1

 2

G[7][7]= 3

 4

 5

 6

 Visited

Index 0 1 2 3 4 5 6

 Q

0 0 0 0 0 0 0

0 0 1 1 0 0 0

0 1 0 0 1 0 0

0 1 0 0 1 0 0

0 0 1 1 0 1 1

0 0 0 0 1 0 0

0 0 0 0 1 0 0

0 0 1 0 1 0 1 0 1 0 1 0 1

1 2 3 4 5 6

1

5

4

2 3

6

16

Queue Header File:

#include<stdlib.h>

#include<stdio.h>

struct Node

{

 int data;

 struct Node *next;

}*front=NULL,*rear=NULL;

void enqueue(int x)

{

 struct Node *t;

 t=(struct Node*)malloc(sizeof(struct Node));

 if(t==NULL)

 printf("Queue is FUll\n");

 else

 {

 t->data=x;

 t->next=NULL;

 if(front==NULL)

 front=rear=t;

 else

 {

 rear->next=t;

 rear=t;

 }

 }

}

int dequeue()

{

 int x=-1;

 struct Node* t;

 if(front==NULL)

 printf("Queue is Empty\n");

 else

 {

 x=front->data;

 t=front;

 front=front->next;

 free(t);

 }

17

 return x;

}

int isEmpty()

{

 return front==NULL;

}

Program:

#include <stdio.h>

#include "Queue.h"

void BFS(int G[][7],int start,int n)

{

 int i=start,j;

 int visited[7]={0};

 printf("%d ",i);

 visited[i]=1;

 enqueue(i);

 while(!isEmpty()){

 i=dequeue();

 for(j=1;j<n;j++){

 if(G[i][j]==1 && visited[j]==0){

 printf("%d ",j);

 visited[j]=1;

 enqueue(j);

 }

 }

 }

}

int main()

{

 int G[7][7]={{0,0,0,0,0,0,0},

 {0,0,1,1,0,0,0},

 {0,1,0,0,1,0,0},

 {0,1,0,0,1,0,0},

 {0,0,1,1,0,1,1},

 {0,0,0,0,1,0,0},

 {0,0,0,0,1,0,0}};

 BFS(G,1,7);

 return 0;

}

18

Input and Output Section:

BFS: 1 2 3 4 5 6

Other Input:

BFS(G,5,7);

BFS: 5 4 2 3 6 1

 WAP to implement Depth-First Search in a graph

Solution:

 0 1 2 3 4 5 6

 0

 1

 2

G[7][7]= 3

 4

 5

 6

 Visited

 0 1 2 3 4 5 6

0 0 0 0 0 0 0

0 0 1 1 0 0 0

0 1 0 0 1 0 0

0 1 0 0 1 0 0

0 0 1 1 0 1 1

0 0 0 0 1 0 0

0 0 0 0 1 0 0

0 0 1 0 1 0 1 0 1 2 0 1 0 1

1

5

4

2 3

6

19

Program:

#include<stdio.h>

void DFS(int G[][7],int start,int n)

{

 static int visited[7]={0};

 int j;

 if(visited[start]==0){

 printf("%d ",start);

 visited[start]=1;

 for(j=1;j<n;j++){

 if(G[start][j]==1 && visited[j]==0){

 DFS(G,j,n);

 }

 }

 }

}

int main()

{

 int G[7][7]={{0,0,0,0,0,0,0},

 {0,0,1,1,0,0,0},

 {0,1,0,0,1,0,0},

 {0,1,0,0,1,0,0},

 {0,0,1,1,0,1,1},

 {0,0,0,0,1,0,0},

 {0,0,0,0,1,0,0}};

printf("DFS: ");

 DFS(G,4,7);

 return 0;

}

Input and Output Section:

DFS: 4 2 1 3 5 6

Other Input:

DFS(G,1,7);

DFS: 1 2 4 3 5 6

20

 Write a program to determine the minimum spanning tree of a graph

Prim’s Algorithm:

 5 25

 10 12

 20

 18 14

 8

 16

 Solution:

cost[V][V]=

track

T=

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

- - - - - - - -

- - 25 - - - 5 -

- 25 - 12 - - - 10

- - 12 - 8 - - -

- - - 8 - 16 - 14

- - - - 16 - 20 18

- 5 - - - 20 - -

- - 10 - 14 18 - -

- - 0 - 0 1 3 - 0 4 6 - 5 6 - 6 -0 -6 2

0 1 2 3 4 5 6 7

1 5 4 3 2 2

6 6 5 4 3 7

1

6

5

7

4

3

2

21

 5

 10 12

 20

 8

 16

Program:

#include<iostream>

using namespace std;

#define V 8

#define I 32767

void PrintMST(int T[][V-2], int G[V][V]){

 cout << "\nMinimum Spanning Tree Edges (w/ cost)\n" << endl;

 int sum=0;

 for (int i=0; i<V-2; i++){

 int c=G[T[0][i]][T[1][i]];

 cout<<"[" << T[0][i] << "]---[" << T[1][i] << "] cost: "<<c<<endl;

 sum=sum+c;

 }

 cout<<endl;

 cout<<"Total cost of MST: "<<sum<<endl;

}

void PrimsMST(int G[V][V], int n){

 int u;

 int v;

 int min={I};

 int track[V];

 int T[2][V-2]={0};

 // Initial: Find min cost edge

 for (int i=1; i<V; i++){

 // Initialize track array with INFINITY

1

6

5

7

4

3

2

22

 track[i]=I;

 for (int j=i; j<V; j++){

 if (G[i][j] < min){

 min=G[i][j];

 u=i;

 v=j;

 }

 }

 }

 T[0][0]=u;

 T[1][0]=v;

 track[u]=track[v]=0;

 // Initialize track array to track min cost edges

 for (int i=1; i<V; i++){

 if (track[i]!=0){

 if (G[i][u]<G[i][v]){

 track[i]=u;

 }

 else {

 track[i]=v;

 }

 }

 }

 // Repeat

 for (int i=1;i<n-1;i++){

 int k;

 min = I;

 for (int j=1;j<V;j++){

 if (track[j]!=0 && G[j][track[j]]<min){

 k=j;

 min=G[j][track[j]];

 }

 }

 T[0][i]=k;

 T[1][i]=track[k];

 track[k]=0;

 // Update track array to track min cost edges

 for (int j=1; j<V; j++){

 if (track[j]!=0 && G[j][k] < G[j][track[j]]){

 track[j]=k;

23

 }

 }

 }

 PrintMST(T, G);

}

int main() {

 int cost[V][V]={

 {I, I, I, I, I, I, I, I},

 {I, I, 25, I, I, I, 5, I},

 {I, 25, I, 12, I, I, I, 10},

 {I, I, 12, I, 8, I, I, I},

 {I, I, I, 8, I, 16, I, 14},

 {I, I, I, I, 16, I, 20, 18},

 {I, 5, I, I, I, 20, I, I},

 {I, I, 10, I, 14, 18, I, I},

 };

 int n=sizeof(cost[0])/sizeof(cost[0][0]) - 1;

 PrimsMST(cost, n);

 return 0;

}

Input and Output Section:

Minimum Spanning Tree Edges (w/ cost)

[1]---[6] cost: 5

[5]---[6] cost: 20

[4]---[5] cost: 16

[3]---[4] cost: 8

[2]---[3] cost: 12

[7]---[2] cost: 10

Total cost of MST: 71

24

Kruskal’s Algorithm:

 5 25

 10 12

 20

 18 14

 8

 16

Solution:

edges

Set

 Included

0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 2 3 4 5 6 7 8

T=

 0 1 2 3 4 5 6 7 8

0 1 1 2 2 3 4 4 5 5

1 2 6 3 7 4 5 7 6 7

2 25 5 12 10 8 16 14 20 18

X -1 6 -1 7 -1 4 -1 -2 7 -1 7 -1 -2 -1 -2 -4 -5

0 1 2 3 4 5 6 7

1 3 2 2 4 5

6 4 7 3 5 6

1

6

5

7

4

3

2

25

Program:

#include <iostream>

#define I 32767 // Infinity

#define V 7 // # of vertices in Graph

#define E 9 // # of edges in Graph

using namespace std;

void PrintMCST(int T[][V-1], int edges[][E]){

 cout << "\nMinimum Cost Spanning Tree Edges\n" << endl;

 for (int i=0; i<V-1; i++){

 cout << "[" << T[0][i] << "]-----[" << T[1][i] << "]"<<endl;

 }

 cout << endl;

}

// Set operations: Union and Find

void Union(int u, int v, int s[]){

 if (s[u]<s[v]){

 s[u]+=s[v];

 s[v]=u;

 }

 else{

 s[v]+=s[u];

 s[u]=v;

 }

}

int Find(int u, int s[]){

 int x=u;

 int v=0;

 while(s[x] > 0){

 x=s[x];

 }

 while(u != x){

 v=s[u];

 s[u]=x;

 u=v;

 }

 return x;

}

26

void KruskalsMCST(int A[3][9]){

 int T[2][V-1]; // Solution array

 int track[E]={0}; // Track edges that are included in solution

 int set[V+1]={-1, -1, -1, -1, -1, -1, -1, -1}; // Array for finding cycle

 int i=0;

 while(i<V-1){

 int min=I;

 int u,v,k;

 u=v=k=0;

 // Find a minimum cost edge

 for (int j=0;j<E;j++){

 if (track[j]==0 && A[2][j]< min){

 min=A[2][j];

 u=A[0][j];

 v=A[1][j];

 k=j;

 }

 }

 // Check if the selected min cost edge (u, v) forming a cycle or not

 if (Find(u, set) != Find(v, set)){

 T[0][i]=u;

 T[1][i]=v;

 // Perform union

 Union(Find(u, set), Find(v, set), set);

 i++;

 }

 track[k] = 1;

 }

 PrintMCST(T, A);

}

int main() {

 int edges[3][9]={{ 1, 1, 2, 2, 3, 4, 4, 5, 5},

 { 2, 6, 3, 7, 4, 5, 7, 6, 7},

 {25, 5, 12, 10, 8, 16, 14, 20, 18}};

 KruskalsMCST(edges);

27

 return 0;

}

Input and Output Section:

Minimum Cost Spanning Tree Edges

[1]-----[6]

[3]-----[4]

[2]-----[7]

[2]-----[3]

[4]-----[5]

[5]-----[6]

 Write a program to determine the LCS of two given sequences

Example:

String1: a b c d e f g h i j

String2: c d g i

Program:

#include <string.h>

#include<stdio.h>

int max(int a, int b) {

 return (a > b) ? a : b;

 }

int lcs(char* X,char* Y,int m,int n)

{

 if(m==0 || n==0){

 return 0;

 }

 if(X[m - 1]==Y[n - 1]){

 return 1 + lcs(X, Y, m - 1, n - 1);

28

 }

 else{

 return max(lcs(X, Y, m, n - 1),lcs(X, Y, m - 1, n));

 }

}

int main()

{

 char X[100],Y[100];

 printf("Enter the first string: \n");

 scanf("%s",X);

 printf("Enter the second string: \n");

 scanf("%s",Y);

 int m = strlen(X);

 int n = strlen(Y);

 int length = lcs(X, Y, m, n);

 printf("Length of LCS: %d\n", length);

 return 0;

}

Input and Output Section:

Enter the first string:

abcdefghij

Enter the second string:

cdgi

Length of LCS: 4

Enter the first string:

ABDACE

Enter the second string:

BABCE

Length of LCS: 4

29

 Create a Red-Black Tree and perform following operations on it:

i) Insert a node

Key: 10,20,30,50,40,60,70,80,4,8

Program:

#include<stdio.h>

#include<stdlib.h>

// Structure to represent each

// node in a red-black tree

struct node {

 int d; // data

 int c; // 1-red, 0-black

 struct node* p; // parent

 struct node* r; // right-child

 struct node* l; // left child

};

// global root for the entire tree

struct node* root = NULL;

40

50 30 8

20
60

4 80

70

10

30

// function to perform BST insertion of a node

struct node* bst(struct node* trav,struct node* temp)

{

 // If the tree is empty,

 // return a new node

 if (trav == NULL)

 return temp;

 // Otherwise recur down the tree

 if (temp->d < trav->d)

 {

 trav->l = bst(trav->l, temp);

 trav->l->p = trav;

 }

 else if (temp->d > trav->d)

 {

 trav->r = bst(trav->r, temp);

 trav->r->p = trav;

 }

 // Return the (unchanged) node pointer

 return trav;

}

// Function performing right rotation

// of the passed node

void rightrotate(struct node* temp)

{

 struct node* left = temp->l;

 temp->l = left->r;

 if (temp->l)

 temp->l->p = temp;

 left->p = temp->p;

 if (!temp->p)

 root = left;

 else if (temp == temp->p->l)

 temp->p->l = left;

 else

 temp->p->r = left;

31

 left->r = temp;

 temp->p = left;

}

// Function performing left rotation

// of the passed node

void leftrotate(struct node* temp)

{

 struct node* right = temp->r;

 temp->r = right->l;

 if (temp->r)

 temp->r->p = temp;

 right->p = temp->p;

 if (!temp->p)

 root = right;

 else if (temp == temp->p->l)

 temp->p->l = right;

 else

 temp->p->r = right;

 right->l = temp;

 temp->p = right;

}

// This function fixes violations

// caused by BST insertion

void fixup(struct node* root, struct node* pt)

{

 struct node* parent_pt = NULL;

 struct node* grand_parent_pt = NULL;

 while ((pt != root) && (pt->c != 0)

 && (pt->p->c == 1))

 {

 parent_pt = pt->p;

 grand_parent_pt = pt->p->p;

 /* Case : A Parent of pt is left child of Grand-parent of pt */

 if (parent_pt == grand_parent_pt->l)

 {

32

 struct node* uncle_pt = grand_parent_pt->r;

 /* Case : 1

 The uncle of pt is also red

 Only Recoloring required */

 if (uncle_pt != NULL && uncle_pt->c == 1)

 {

 grand_parent_pt->c = 1;

 parent_pt->c = 0;

 uncle_pt->c = 0;

 pt = grand_parent_pt;

 }

 else {

 /* Case : 2

 pt is right child of its parent

 Left-rotation required */

 if (pt == parent_pt->r) {

 leftrotate(parent_pt);

 pt = parent_pt;

 parent_pt = pt->p;

 }

 /* Case : 3

 pt is left child of its parent

 Right-rotation required */

 rightrotate(grand_parent_pt);

 int t = parent_pt->c;

 parent_pt->c = grand_parent_pt->c;

 grand_parent_pt->c = t;

 pt = parent_pt;

 }

 }

 /* Case : B

 Parent of pt is right

 child of Grand-parent of

 pt */

 else {

33

 struct node* uncle_pt = grand_parent_pt->l;

 /* Case : 1

 The uncle of pt is also red

 Only Recoloring required */

 if ((uncle_pt != NULL) && (uncle_pt->c == 1))

 {

 grand_parent_pt->c = 1;

 parent_pt->c = 0;

 uncle_pt->c = 0;

 pt = grand_parent_pt;

 }

 else {

 /* Case : 2

 pt is left child of its parent

 Right-rotation required */

 if (pt == parent_pt->l) {

 rightrotate(parent_pt);

 pt = parent_pt;

 parent_pt = pt->p;

 }

 /* Case : 3

 pt is right child of its parent

 Left-rotation required */

 leftrotate(grand_parent_pt);

 int t = parent_pt->c;

 parent_pt->c = grand_parent_pt->c;

 grand_parent_pt->c = t;

 pt = parent_pt;

 }

 }

 }

}

// Function to print inorder traversal

// of the fixated tree

void inorder(struct node* trav)

{

 if (trav == NULL)

34

 return;

 inorder(trav->l);

 printf("%d ", trav->d);

 inorder(trav->r);

}

// driver code

int main()

{

 int n = 10;

 int a[10] = { 10,20,30,50,40,60,70,80,4,8 };

 for (int i = 0; i < n; i++) {

 // allocating memory to the node and initializing:

 // 1. color as red

 // 2. parent, left and right pointers as NULL

 // 3. data as i-th value in the array

 struct node* temp

 = (struct node*)malloc(sizeof(struct node));

 temp->r = NULL;

 temp->l = NULL;

 temp->p = NULL;

 temp->d = a[i];

 temp->c = 1;

 // calling function that performs bst insertion of

 // this newly created node

 root = bst(root, temp);

 // calling function to preserve properties of rb

 // tree

 fixup(root, temp);

 root->c = 0;

 }

 printf("Inorder Traversal of Created Tree\n");

 inorder(root);

 return 0;

}

35

Input and Output Section:

Inorder Traversal of Created Tree

4 8 10 20 30 40 50 60 70 80

ii) Delete a node

70

80 50 20

40
100

10 120

110

30
60 90

36

Delete 100

Delete 110

70

80 50 20

40
90

10 120

110

30
60

70

80 50 20

40
90

10

120

30
60

37

Delete 80

Delete 120

70

50 20

40
90

10

120

30
60

70

50 20

40
90

10 30
60

38

Delete 90

Program:

#include <iostream>

#include <queue>

using namespace std;

enum COLOR { RED, BLACK };

class Node {

public:

int val;

COLOR color;

Node *left, *right, *parent;

Node(int val) : val(val) {

 parent=left=right=NULL;

 // Node is created during insertion

 // Node is red at insertion

 color=RED;

}

// returns pointer to uncle

Node *uncle() {

 // If no parent or grandparent, then no uncle

50

60 20

40

10 30 70

39

 if (parent==NULL or parent->parent==NULL)

 return NULL;

 if (parent->isOnLeft())

 // uncle on right

 return parent->parent->right;

 else

 // uncle on left

 return parent->parent->left;

}

// check if node is left child of parent

bool isOnLeft() {

 return this == parent->left;

 }

// returns pointer to sibling

Node *sibling(){

 // sibling null if no parent

 if (parent==NULL)

 return NULL;

 if(isOnLeft())

 return parent->right;

 return parent->left;

}

// moves node down and moves given node in its place

void moveDown(Node *nParent) {

 if(parent!=NULL) {

 if(isOnLeft()) {

 parent->left=nParent;

 } else {

 parent->right=nParent;

 }

 }

 nParent->parent=parent;

 parent=nParent;

}

40

bool hasRedChild() {

 return(left!=NULL and left->color==RED) or (right!=NULL and

right->color==RED);

 }

};

class RBTree {

Node *root;

// left rotates the given node

void leftRotate(Node *x) {

 // new parent will be node's right child

 Node *nParent=x->right;

 // update root if current node is root

 if (x==root)

 root=nParent;

 x->moveDown(nParent);

 // connect x with new parent's left element

 x->right=nParent->left;

 // connect new parent's left element with node

 // if it is not null

 if (nParent->left!=NULL)

 nParent->left->parent=x;

 // connect new parent with x

 nParent->left=x;

}

void rightRotate(Node *x) {

 // new parent will be node's left child

 Node *nParent=x->left;

 // update root if current node is root

 if (x==root)

 root=nParent;

 x->moveDown(nParent);

 // connect x with new parent's right element

41

 x->left=nParent->right;

 // connect new parent's right element with node

 // if it is not null

 if(nParent->right != NULL)

 nParent->right->parent = x;

 // connect new parent with x

 nParent->right=x;

}

void swapColors(Node *x1, Node *x2) {

 COLOR temp;

 temp=x1->color;

 x1->color=x2->color;

 x2->color=temp;

}

void swapValues(Node *u, Node *v) {

 int temp;

 temp=u->val;

 u->val=v->val;

 v->val=temp;

}

// fix red red at given node

void fixRedRed(Node *x) {

 // if x is root color it black and return

 if (x==root) {

 x->color=BLACK;

 return;

 }

 // initialize parent, grandparent, uncle

 Node *parent=x->parent, *grandparent=parent->parent,

 *uncle=x->uncle();

 if (parent->color!=BLACK) {

 if (uncle!=NULL && uncle->color==RED) {

 // uncle red, perform recoloring and recurse

 parent->color=BLACK;

 uncle->color=BLACK;

42

 grandparent->color=RED;

 fixRedRed(grandparent);

 } else {

 // Else perform LR, LL, RL, RR

 if (parent->isOnLeft()) {

 if (x->isOnLeft()) {

 // for left right

 swapColors(parent, grandparent);

 } else {

 leftRotate(parent);

 swapColors(x, grandparent);

 }

 // for left left and left right

 rightRotate(grandparent);

 }

 else{

 if(x->isOnLeft()){

 // for right left

 rightRotate(parent);

 swapColors(x, grandparent);

 }

 else{

 swapColors(parent, grandparent);

 }

 // for right right and right left

 leftRotate(grandparent);

 }

 }

 }

}

// find node that do not have a left child

// in the subtree of the given node

Node *successor(Node *x) {

 Node *temp=x;

 while(temp->left!=NULL)

 temp=temp->left;

 return temp;

43

}

// find node that replaces a deleted node in BST

Node *BSTreplace(Node *x) {

 // when node have 2 children

 if (x->left!=NULL and x->right!=NULL)

 return successor(x->right);

 // when leaf

 if (x->left==NULL and x->right==NULL)

 return NULL;

 // when single child

 if (x->left!=NULL)

 return x->left;

 else

 return x->right;

}

// deletes the given node

void deleteNode(Node *v) {

 Node *u=BSTreplace(v);

 // True when u and v are both black

 bool uvBlack=((u==NULL or u->color==BLACK) and (v-

>color==BLACK));

 Node *parent=v->parent;

 if(u==NULL) {

 // u is NULL therefore v is leaf

 if(v==root) {

 // v is root, making root null

 root=NULL;

 } else{

 if(uvBlack) {

 // u and v both black

 // v is leaf, fix double black at v

 fixDoubleBlack(v);

 }

 else{

44

 // u or v is red

 if(v->sibling()!=NULL)

 // sibling is not null, make it red"

 v->sibling()->color=RED;

 }

 // delete v from the tree

 if (v->isOnLeft()) {

 parent->left=NULL;

 }

 else {

 parent->right=NULL;

 }

 }

 delete v;

 return;

 }

 if (v->left==NULL or v->right==NULL) {

 // v has 1 child

 if (v==root) {

 // v is root, assign the value of u to v, and delete u

 v->val=u->val;

 v->left=v->right=NULL;

 delete u;

 }

 else{

 // Detach v from tree and move u up

 if(v->isOnLeft()) {

 parent->left=u;

 }

 else {

 parent->right=u;

 }

 delete v;

 u->parent=parent;

 if(uvBlack) {

 // u and v both black, fix double black at u

 fixDoubleBlack(u);

 }

45

 else{

 // u or v red, color u black

 u->color=BLACK;

 }

 }

 return;

 }

 // v has 2 children, swap values with successor and recurse

 swapValues(u, v);

 deleteNode(u);

}

void fixDoubleBlack(Node *x) {

 if (x==root)

 // Reached root

 return;

 Node *sibling=x->sibling(), *parent=x->parent;

 if (sibling==NULL) {

 // No sibling, double black pushed up

 fixDoubleBlack(parent);

 } else {

 if (sibling->color==RED) {

 // Sibling red

 parent->color=RED;

 sibling->color=BLACK;

 if(sibling->isOnLeft()) {

 // left case

 rightRotate(parent);

 }

 else {

 // right case

 leftRotate(parent);

 }

 fixDoubleBlack(x);

 } else {

 // Sibling black

 if(sibling->hasRedChild()) {

 // at least 1 red children

 if(sibling->left!=NULL and sibling->left->color==RED)

46

 {

 if (sibling->isOnLeft()) {

 // left left

 sibling->left->color=sibling->color;

 sibling->color=parent->color;

 rightRotate(parent);

 } else {

 // right left

 sibling->left->color=parent->color;

 rightRotate(sibling);

 leftRotate(parent);

 }

 } else {

 if (sibling->isOnLeft()) {

 // left right

 sibling->right->color=parent->color;

 leftRotate(sibling);

 rightRotate(parent);

 }

 else {

 // right right

 sibling->right->color=sibling->color;

 sibling->color=parent->color;

 leftRotate(parent);

 }

 }

 parent->color=BLACK;

 }

 else {

 // 2 black children

 sibling->color=RED;

 if (parent->color==BLACK)

 fixDoubleBlack(parent);

 else

 parent->color=BLACK;

 }

 }

 }

}

47

// prints level order for given node

void levelOrder(Node *x){

 if (x==NULL)

 // return if node is null

 return;

 // queue for level order

 queue<Node *> q;

 Node *curr;

 // push x

 q.push(x);

 while(!q.empty()) {

 // while q is not empty

 // dequeue

 curr=q.front();

 q.pop();

 // print node value

 cout<<curr->val << " ";

 // push children to queue

 if(curr->left != NULL)

 q.push(curr->left);

 if(curr->right != NULL)

 q.push(curr->right);

 }

}

// prints inorder recursively

void inorder(Node *x) {

 if(x==NULL)

 return;

 inorder(x->left);

 cout << x->val << " ";

 inorder(x->right);

}

public:

48

// constructor

// initialize root

RBTree(){

 root=NULL;

 }

Node *getRoot()

{

 return root;

 }

// searches for given value

// if found returns the node (used for delete)

// else returns the last node while traversing (used in insert)

Node *search(int n) {

 Node *temp=root;

 while(temp!=NULL) {

 if (n<temp->val) {

 if (temp->left == NULL)

 break;

 else

 temp=temp->left;

 }

 else if(n==temp->val) {

 break;

 }

 else{

 if (temp->right==NULL)

 break;

 else

 temp=temp->right;

 }

 }

 return temp;

}

// inserts the given value to tree

void insert(int n) {

 Node *newNode=new Node(n);

 if (root==NULL) {

 // when root is null

49

 // simply insert value at root

 newNode->color=BLACK;

 root=newNode;

 } else {

 Node *temp=search(n);

 if (temp->val==n) {

 // return if value already exists

 return;

 }

 // if value is not found, search returns the node

 // where the value is to be inserted

 // connect new node to correct node

 newNode->parent = temp;

 if(n<temp->val)

 temp->left=newNode;

 else

 temp->right=newNode;

 // fix red red violation if exists

 fixRedRed(newNode);

 }

}

// utility function that deletes the node with given value

void deleteByVal(int n) {

 if (root==NULL)

 // Tree is empty

 return;

 Node *v=search(n), *u;

 if (v->val!=n) {

 cout << "No node found to delete with value:" << n << endl;

 return;

 }

 deleteNode(v);

}

// prints inorder of the tree

50

void printInOrder() {

 cout <<"Inorder: " << endl;

 if(root==NULL)

 cout<< "Tree is empty" << endl;

 else

 inorder(root);

 cout << endl;

}

// prints level order of the tree

void printLevelOrder() {

 cout << "Level order: " << endl;

 if(root==NULL)

 cout<< "Tree is empty" << endl;

 else

 levelOrder(root);

 cout << endl;

 }

};

int main() {

RBTree tree;

tree.insert(70);

tree.insert(40);

tree.insert(100);

tree.insert(20);

tree.insert(50);

tree.insert(80);

tree.insert(110);

tree.insert(10);

tree.insert(30);

tree.insert(60);

tree.insert(90);

tree.insert(120);

tree.printInOrder();

tree.printLevelOrder();

cout<<endl<<"Deleting 100, 110, 80, 120, 90"<<endl;

tree.deleteByVal(100);

tree.deleteByVal(110);

51

tree.deleteByVal(80);

tree.deleteByVal(120);

tree.deleteByVal(90);

tree.printInOrder();

tree.printLevelOrder();

return 0;

}

Input and Output Section:

Inorder:

10 20 30 40 50 60 70 80 90 100 110 120

Level order:

70 40 100 20 50 80 110 10 30 60 90 120

Deleting 100, 110, 80, 120, 90

Inorder:

10 20 30 40 50 60 70

Level order:

40 20 60 10 30 50 70

52

C9P: SOFTWARE ENGINEERING LABORATORY

MANUAL

(Course: CC-9)

Assignment

S. No Practical Title

53

1.  Problem Statement,
 Process Model

2. Requirement Analysis:
 Creating a Data Flow
 Data Dictionary, Use Cases

3. Project Management:

  Computing FP
 Effort
 Schedule, Risk Table, Timeline chart

4. Design Engineering:
 Architectural Design
 Data Design, Component Level Design

5. Testing:
 Basis Path Testing

List of Experiments

1 Course Management System

2 Easy Leave

3 E-Bidding

4 Electronic Cash Counter

5 **Library Management System

Experiment - 1

COURSE MANAGEMENT SYSTEM

54

1.1 OBJECTIVE:

A course management system (CMS) is a collection of software

tools providing an online environment for course interactions. A

CMS typically includes a variety of online tools and environments,

such as:

 An area for faculty posting of class materials such as course syllabus and

handouts

 An area for student posting of papers and other assignments

 A grade book where faculty can record grades and each student can view

his or her grades

 An integrated email tool allowing participants to send

announcement email messages to the entire class or to a subset of

the entire class

 A chat tool allowing synchronous communication among class
participants

 A threaded discussion board allowing asynchronous communication

among participants.

In addition, a CMS is typically integrated with other databases in

the university so that students enrolled in a particular course are

automatically registered in the CMS as participants in that course.

The Course Management System (CMS) is a web application for

department personnel, Academic Senate, and Registrar staff to

view, enter, and manage course information formerly Submitted

via paper. Departments can use CMS to create new course

proposals, submit changes for existing courses, and track the

progress of proposals as they move through the stages of online

approval.

Problem Analysis and Project Planning

55

A course management system is a set of tools that enables an online environment

for course interaction i.e. to create online course content and post it on the Web

without having to handle HTML or other programming languages.

Course management system become an integral a part of the upper education

system. They create teaching and course management easier by providing a

framework and set of tools for faculties and for students. The executive aspects

of such systems could include class rosters (a group of people or things) and

therefore the ability to record students’ grades. With relevance the teaching

aspects, however, it might include learning objects, class exercises, quizzes and

tests. The CMS might also include tools for real-time chat, integrated email tool

allowing participants to send announcement email messages to entire class or to

a subset of the entire class. The CMS tool additionally focuses on all aspects of

teaching, learning and teacher-student interaction.

1.2 RESOURCE:

Software Requirement Analysis

(1) Module Summary:

(1.1)Administrator Module:

Admin can produce accounts for college students and faculties and make course

programmed list and add faculties and students to it course list.

Admin can produce course details exploitation course creation kind that consists

in fact name, course id, and choose student. Using Student creator kind student

details are entered to information. User name, adapt username, password, given

name and name, ID. After accounts are produced supported every students and

instructors are divided and accessorial to list exploitation create missing students

kind.

(1.2)Faculty Module:

It can check student’s papers, their assignments and assign grades for work. This

56

module accommodates preparation menu, choose student for grades.

(1.3)Students Module: Student can register with application or the proposed

system and login with user name and password. He will check and submit

assignment and his/her grade. Every student can have id.

1.2 PROCEDURE:

(2) Functional and Non-Functional

Requirements (2.1)Functional

Requirements:

(2.1.1) Creating Courses

57

Integration with registration system: The system

 shall periodically upload the latest registrar’s classes list to

determine courses that offered in the current semester.

The system shall generate course for each class that registered and determine the

current set of students that enrolled in that class.

The system shall allow course instructor to update course content.
(2.1.2)Grade Management

a. Allow grades to be entered online: The system shall allow instructors to enter

and modify grades online.

b. Allow students to access their grades online: The system shall allow student

to log in their account and check their grades at any time.

c. The system shall provide statistical information such as averages, standard

deviation, and median about student’s grades.

d. Track and Handle Re-grade Requests: The system shall be able to track and

handle requests for re- grades, and all information about re-grades shall be

available to the student, and the course instructor.

(2.1.3)Paper and Assignment Submission

a. Accept submissions in multiple formats: The system shall accept submissions

in multiple formats, including .zip, .cpp, .txt, .doc,etc.

b. Support for late submissions: The system shall provide information about late

submissions, and also disallow submissions after a certain period of time.

c. Integration with grade management: The homework submission system shall

be integrated with the grade management by using online grading templates

that can be filled out, and automatically annotating code with line numbers.

1. Assignment grades can be automatically posted to student account.

2. Grader comments can be sent along with the grades.

(2.1.4)Create Accounts

a. The system shall automatically create accounts for each class.

1. Create one account for course instructor regardless to the number of classes

58

that he/she teaches.

2. The account username is course name and its number.

3. The account password is the same password that in Academic Information System

(AIS).

4. Any change in the password in AIS the system shall reflect it on the

instructor account password in CMS.

59

5. Create one account for each student that registered in this class.

6. The account username is course name and its number.

7. The account password is the same password that in Student Information System

(SIS).

8. Any change in the password in SIS the system shall reflect it on the

student account password in CMS.

b. Instructor account contain the classes that he/she teach, each class contain

list of student that ordered based on student serial number.

c. Instructor can modify student grades from his/her account.

(2.2)Non-Functional Requirements:

(2.2.1)Response Time

a. Average response time shall be less than 2 second.

(2.2.2) Throughput

a. The system shall accommodate 1000 booked per minute.

(2.2.3) Recovery Time

a. In case of a system failure, redundant system shall resume operations within 30

sec.

b. Average repair time shall be less than 1 hour.

(2.2.4)Start-up/Shutdown Time

a. The system shall be operational within 1 minute of starting-up.

(2.2.5) Capacity

a. The system accommodates 4000 concurrent users.

(2.2.6)Utilization of Resources

a. The system shall store in the database no more than one million transactions.

b. If the database grows over this limit, old transaction shall be backed up

and deleted from the operational database.

(2.2.7) Security

a. Firewall Protection: The course management software system shall

run inside a firewall.

b. Support different roles: The system shall support different roles for users,

60

such as Instructors, Students, and administrative staff, the user logged in

with given role should only be allowed access consistent with that role.

For example a student shall only be allowed to see he/she grades not to

modify it.

(2.2.8) Reliability

a. The system shall not be down more 2 times in year.

(2.2.9) Scalability

61

a. Scaling the system to large number of users: large courses will have

hundreds of students.

b. The system shall be able to handle the load for such courses, especially

near assignment deadlines when many students can be expected to access

the course management system.

1.4 DATA MODELING and DESIGN

(1) Product Perspective
The system will be operating within university environment. This

environment has anther systems that will interact with this system so we need

interfaces between these system

(2) Flow Chart

The below diagram will provide the overall flow of the project.

62

(3) Data

Dictionary

(3.1)StudentDet

ails

FIELD
NAME

TYPE CONSTRAIN
TS

Sid Varchar2 Primary key
Name Varchar2
Roll_No Varchar2 Notnull
Regulation Varchar
Courseid Number Foreign key
grade Char
Fid Varchar2 Foreign Key

63

(3.2)CourseDetails

FIELD
NAME

TYPE CONSTRAIN
TS

Courseid Number Primary key
CourseName Varchar

2

Start_date Date
End_date Date
Subject Varchar

2
not null

(3.3)FacultyDetails

FIELD

NAME

TYPE CONSTRAIN

TS
Fid Varchar

2
Primary key

Name Varchar
2

Courseid Number Foreign Key
Designation Varchar
Subject Varchar

(3.4)LoginDetails

FIELD
NAME

TYPE CONSTRAIN
TS

Userid Varchar2 Unique
Password Varchar2 Not null

64

Software Designing

UML

UML stands for Unified Modeling Language. This object-oriented system of

notation has evolved from the work of Grady Booch, James Rum Baugh, Ivar

Jacobson, and the Rational Software Corporation. These renowned computer

scientists fused their respective technologies into a single, standardized model.

Today, UML is accepted by the Object Management Group (OMG) as the

standard for modeling object oriented programs.

UML Diagrams

UML defines nine types of diagrams: class (package), object, use case, sequence,

collaboration, state chart, activity, component, and deployment diagram.

(1) Use Case Diagram

Use case diagrams are used to gather the requirements of a system

including internal and external influences. These requirements are mostly design

requirements. Hence, when a system is analyzed to gather its functionalities, use

cases are prepared and actors are identified.

The purposes of use case diagrams can be defined as follows −

 Used to gather the requirements of a system.

 Used to get an outside view of a system.

 Identify the external and internal factors influencing the system.

 Show the interaction among the requirements is actors.

65

Sequence Diagram

This interactive behavior is represented in UML by Sequence diagram.

Sequence diagram emphasizes on time sequence of messages that send and

receive messages.

Following things are to be identified clearly before drawing the sequence diagram

 Objects taking part in the interaction.

 Message flows among the objects.

 The sequence in which the messages are flowing.

 Object organization.

66

Activity Diagram

The basic purposes of activity diagrams are to captures the dynamic behavior of

the system. Activity is a particular operation of the system. Activity diagrams are

not only used for visualizing the dynamic nature of a system, but they are also

used to construct the executable system by using forward and reverse engineering

techniques. The only missing thing in the activity diagram is the message part.

The purpose of an activity diagram can be described as −

 Draw the activity flow of a system.

 Describe the sequence from one activity to another.

 Describe the parallel, branched and concurrent flow of the system.

67

Class Diagram

The purpose of class diagram is to model the static view of an application. Class

diagrams are the only diagrams which can be directly mapped with object-

oriented languages and thus widely used at the time of construction.

The purpose of the class diagram can be summarized as −

 Analysis and design of the static view of an application.

 Describe responsibilities of a system.

 Base for component and deployment diagrams.

 Forward and reverse engineering.

68

69

Prototype model

Prototype is a working model of software with some limited functionality. The

prototype does not always hold the exact logic used in the actual software

application and is an extra effort to be considered under effort estimation.

Prototyping is used to allow the users evaluate developer proposals and try them

out before implementation. It also helps understand the requirements which are

user specific and may not have been considered by the developer during product

design.

To get course List

Following fields are available in this project

70

71

Internal asynchronous messaging – mail that can be sent and read from

within an online course

1.5 PRE LAB QUESTIONS

1) Describe various phases of a software project.

2) Explain about various process models.

1.6 LAB ASSIGNMENT

1) Analyze at which type of situations which process model can be used in a

project.

2) Prepare Software Specification document (SRS) for the given project.

1.7 POST LAB QUESTIONS

1) Explain various phases of a software project with brief description.

2) Explain how design can be constructed from analysis.

3) Describe the coding and testing process in a software project.

72

2.1 OBJECTIVE:

This project is aimed at developing a web based Leave Management Tool, which

is of importance to either an organization or a college. The Easy Leave is an

Intranet based application that can be accessed throughout the Organization or a

specified group/Dept. This system can be used to automate the workflow of leave

applications and their approvals. The periodic crediting of leave is also

automated. There are features like notifications, cancellation of leave, automatic

approval of leave, report generators etc in this Tool.

Functional components of the project:

There are registered people in the system. Some are approvers. An approver can

also be a requestor. In an organization, the hierarchy could be

Engineers/Managers/Business Managers/Managing Director etc. In a college, it

could be Lecturer/Professor/Head of the Department/Dean/Principal etc.

Following is a list of functionalities of the system: A person should be able to

 login to the system through the first page of the application

 change the password after logging into the system

 see his/her eligibility details (like how many days of leave he/she is eligible for etc)

 query the leave balance

 see his/her leave history since the time he/she joined the company/college

 apply for leave, specifying the form and to dates, reason for taking leave,

address for communication while on leave and his/her superior's email id

 see his/her current leave applications and the leave applications that are

submitted to him/her for approval or cancellation

 approve/reject the leave applications that are submitted to him/her

Experiment - 2

EASY LEAVE

73

 withdraw his/her leave application (which has not been approved yet)

 Cancel his/her leave (which has been already approved). This will need to

be approved by his/her Superior

 get help about the leave system on how to use the different features of the system

74

 As soon as a leave application /cancellation request /withdrawal /approval

/rejection

/password-change is made by the person, an automatic email should be sent

to the person and his superior giving details about the action

 The number of days of leave (as per the assumed leave policy) should be

automatically credited to everybody and a notification regarding the same be

sent to them automatically

 An automatic leave-approval facility for leave applications which are older

than 2 weeks should be there. Notification about the automatic leave approval

should be sent to the person as well as his superior

2.2 RESOURCE

Problem Analysis and Project Planning

In the existing Leave Record Management System, every College/Department

follows manual procedure in which faculty enters information in a record book.

At the end of each month/session, Administration Department calculates leave/s

of every member which is a time taking process and there are chances of losing

data or errors in the records. This module is a single leave management system

that is critical for HR tasks and keeps the record of vital information regarding

working hours and leaves. It intelligently adapts to HR policy of the management

and allows employees and their line managers to manage leaves and

replacements (if required).

In this module, Head of Department (HOD) will have permissions to look after

data of every faculty member of their department.HOD can approve leave

through this application and can view leave information of every individual. This

application can be used in a college to reduce processing work load. This

project’s main idea is to develop an online centralized application connected to

database which will maintain faculty leaves, notices information and their

replacements (if needed). Leave management application will reduce paperwork

75

and maintain record in a more efficient & systematic way. This module will also

help to calculate the number of leaves taken monthly/annually and help gather

data with respect to number of hours’ worked, thereby helping in calculating the

work hours by the HR Department.

Software Requirement Analysis

In the existing paper work related to leave management, leaves are maintained

using the attendance register for staff. The staff needs to submit their leaves

manually to their

76

respective authorities. This increases the paperwork & maintaining the records

becomes tedious. Maintaining notices in the records also increases the

paperwork. The main objective of the proposed system is to decrease the

paperwork and help in easier record maintenance by having a particular

centralized Database System, where Leaves and Notices are maintained. The

proposed system automates the existing system. It decreases the paperwork and

enables easier record maintenance. It also reduces chances of Data loss. This

module intelligently adapts to HR policy of the management &allows employees

and their line managers to manage leaves and replacements for better scheduling

of workload. The application basically contains the given modules:

2.3 PROCEDURE :

Module:

1) STAFF MODULE: It consist of two types of faculties

a) Teaching

b) Non-teaching

2) HOD MODULE: It consists of Head of the Department/Manager Body

which takes critical decision related to HR.

3) ADMINISTRATION MODULE: It calculates leaves & maintains records.

Objective:

 To automate the existing leave management in educational institutes

 To decrease the paperwork and enable the process with efficient, reliable

record maintenance by using centralized database, thereby reducing

chances of data loss

 To provide for an automated leave management system that intelligently

adapts to HR policy of the organization and allows employees and their

line managers to manage leaves and replacements for better scheduling of

work load & processes.

Functional Requirements:

77

 login to the system through the first page of the application

 change the password after logging into the system

 see his/her eligibility details (like how many days of leave he/she is eligible for etc)

 query the leave balance

 see his/her leave history since the time he/she joined the company/college

 apply for leave, specifying the form and to dates, reason for taking leave,

and address for communication while on leave and his/her superior's email

id

78

 see his/her current leave applications and the leave applications that are

submitted to him/her for approval or cancellation

 approve/reject the leave applications that are submitted to him/her

 withdraw his/her leave application (which has not been approved yet)

 Cancel his/her leave (which has been already approved). This will need to

be approved by his/her Superior

 get help about the leave system on how to use the different features of the system

 As soon as a leave application /cancellation request /withdrawal /approval

/rejection

/password-change is made by the person, an automatic email should be sent to

the person and his superior giving details about the action

 The number of days of leave (as per the assumed leave policy) should be

automatically credited to everybody and a notification regarding the same be

sent to them automatically

 An automatic leave-approval facility for leave applications which are older

than 2 weeks should be there. Notification about the automatic leave approval

should be sent to the person as well as his superior

Non-Functional Requirements:

Security

a. Firewall Protection: The Easy leave software system shall run inside a firewall.

b. Support different roles: The system shall support different roles for users,

such as Lecturer/Professor/Head of the Department/Dean/Principal, the user

logged in with given role should only be allowed access consistent with that

role.

Scalability

a. Scaling the system to large number of users: As faculties are going to use

easy leave server every time to apply leaves.

b. The system should able to operate properly when the web application is

accessed by many users at a single time.

79

Utilization of Resources

a. The system shall store in the database no more than one million transactions.

b. If the database grows over this limit, old transaction shall be backed up

and deleted from the operational database.

80

Data Modeling

1. Data Flow Diagram

a. DFD for teaching staff

b. DFD for non-teaching staff

81

c. DFD for HOD

d. DFD for Admin

82

83

2. Data Dictionary

2.1 StaffDetails

FIELD
NAME

TYPE CONSTRAIN
TS

staffID Number Primary key
Name Varchar

2

DeptId Number Foreign key
Email Varchar

2

phone Number unique
DOJ Date

2.2 LeavesDetails

FIELD

NAME

TYPE CONSTRAIN

TS
Staffid Numbe

r
Foreign key

TotalCL Numbe
r

usedCL Numbe
r

BalanceCL Numbe
r

TotalCCL Numbe
r

usedCCL Numbe
r

BalanceCCL Numbe
r

2.3 LeaveInfo

FIELD NAME TYPE CONSTRAIN

TS
Staffid Number Foreign key
NoOfDays Number

TypeOfLeave Varchar
2

FromDate Date
ToDate Date
HODStatus char

PrincipalStatus char
AdminStatus char

84

2.4 Adjustments

FIELD

NAME

TYPE CONSTRAIN

TS
FacultyId Number Foreign key
ToId Number
Class Varchar2
DeptId Number Foreign key
Hour Number
Status char

85

2.5 DeptCode

FIELD
NAME

TYPE CONSTRAIN
TS

DeptId Number Primary key
DeptName Varchar2

2.6 HodDetails

FIELD
NAME

TYPE CONSTRAIN
TS

StaffId Number Foreign key
DeptId Number Foreign key

2.7 PrincipalDetails

FIELD
NAME

TYPE CONSTRAINTS

StaffId Number Foreign key
DeptId Number Foreign key

SOFTWARE DESIGNING

UML DIAGRAMS

Activity diagram for employee/staff:

86

Activity diagram for hod:

Activity diagram for accountant:

87

88

Use case diagrams:

89

Sequence diagram:

90

Prototype :

91

92

93

94

95

96

97

2.5 PRE LAB QUESTIONS

1) Describe various phases of a software project.

2) Explain about various process models.

2.6 LAB ASSIGNMENT

1) Analyze at which type of situations which process model can be used in a project.

2) Prepare Software Specification document (SRS) for the given project.

2.7 POST LAB QUESTIONS

1) Explain various phases of a software project with brief description.

2) Explain how design can be constructed from analysis.

3) Describe the coding and testing process in a software project.

98

1.1 OBJECTIVE:

Auctions are among the latest economic institutions in place. They have been

used since antiquity to sell a wide variety of goods, and their basic form has

remained unchanged. In this dissertation, we explore the efficiency of common

auctions when values are interdependent-the value to a particular bidder may

depend on information available only to others-and asymmetric. In this setting,

it is well known that sealed-bid auctions do not achieve efficient allocations in

general since they do not allow the information held by different bidders to be

shared.

Typically, in an auction, say of the kind used to sell art, the auctioneer sets a

relatively low initial price. This price is then increased until only one bidder is

willing to buy the object, and the exact manner in which this is done varies. In

my model a bidder who drops out at some price can "reenter" at a higher price.

With the invention of E-commerce technologies over the Internet the opportunity

to bid from the comfort of one’s own home has seen a change like never seen

before. Within the span of a few short years, what may have began as an

experimental idea has grown to an immensely popular hobby, and in some cases,

a means of livelihood, the Auction Patrol gathers tremendous response every day,

all day. With the point and click of the mouse, one may bid on an item they may

need or just want, and in moments they find that either they are the top bidder or

someone else wants it more, and you're outbid! The excitement of an auction all

from the comfort of home is a completely different experience. Society cannot

Experiment - 3

E-BIDDING

99

seem to escape the criminal element in the physical world, and so it is the same

with Auction Patrols. This is one area where in a question can be raised as to how

safe Auction Patrols.

Proposed system

To generate the quick reports

To make accuracy and efficient

calculations To provide proper

information briefly

To provide data security

To provide huge maintenance of records

100

Flexibility of transactions can be completed in time

1.2 RESOURCE:

Problem Analysis and Project Planning

An Auction is Latin work which means augment. Auction is a bid, a process of

selling; buying and services offered take place. There are several different types

of auctions and certain rules exist for each auction. There are variations for an

auction which may include minimum price limit, maximum price limit and time

limitations etc. Depending upon the auction method bidder can participate

remotely or in person. Remote auction include participating through telephone,

mail, and internet. Shopping online has widely grown; online auction system is

increasing rapidly. Online auction is becoming more and more popular in

electronic commerce and hence it should system must increase its quality and

security.

The online auction system is a model where we participate in a bid for products

and service. This auction is made easier by using online software which can

regulate processes involved. There are several different auction methods or types

and one of the most popular methods is English auction system. This system has

been designed to be highly-scalable and capable of supporting large numbers of

bidders in an active auction. Online Auctioning System has several other names

such as e-Auctions, electronic auction etc. The requirement for online auction or

online bidding can be more accurately specified by the client. It should be healthy

and will be a good practice when it is made more transparent as a matter of fact.

Online Bidding has become more wide spread in all sorts of industrial usage. It

not only includes the product or goods to be sold, it also has services which can

be provided. Due to their low cost this expansion made the system to grow.

Online bidding has become a standard method for procurement process. Bidders

can be maintained in a single database according to the preference, and they can

be monitored. User’s data can be maintained in a confidential way for validity

101

and integrity of contractual documentation. Neat reporting reduces paperwork,

postage, photocopying and time beneficial. Multiple bidders can be

communicated with a great ease. This system allows multiple bids by single

users. Online bidding is based upon lowest or the highest price which is initiated

but not the best value for the product. Although there is a chance to fix the criteria

against the fact expected to have desired value by the seller.

102

OVERVIEW

The Objective is to develop a user-friendly auctioning site where any kind of

product can be auctioned and provide value-added services to the bidders and the

sellers. The products will be authenticated and the site provides a safe

environment for online users:

 Secure registration of all users including a personal profile Administrators

would authorize the product to auction, set auction dates and Minimum

auction amount for that product.

 Prior to each bid, the user’s bank or credit account must be authenticated for

available balance required for the bid.

 Complete Search/Site Map of the entire site for easy access.

 Discussion forums for users to interact with other users to know about

the product’s value and originality.

 Online Legal Documentation to avoid disputes. Guidance to the users

about the same must be available.

 Rare articles may be withheld by owner on the advice of the administrator to

bethrown open in special auctions held by the site so as to increase the bid-

values.

Software Requirement Analysis

Modules:

1. Login:

Login Module includes various utilities like User Registration,

Authentication, Change Password and Forgot Password.

2. Category Management:

This module provides all facilities to admin for managing the Category.

3. Package Management:

This module provides all facilities to admin for managing the Package.

4. Search:

Search Module Provides Category wise Search of items.

5. Auction:

In This Module Seller can Upload their Products for Auction, Bidders can

bid for the Products finally Admin decides the Winner based on Highest

103

Bidding Price.

6. Report:

Report Generation Module can generate reports of past Auctions, Sellers and Bidders.

Users:

1. Admin
2. Seller

3. Bidder

1. Admin

 Admin can manage user and product.

104

 Admin can manage category.

 Admin can send the update to the seller and bidder.

 Admin can manage biding.

 Admin can manage package.

 Admin can generate the whole system work report.

2. Seller

 Seller can upload auction product.

 Seller can set the starting prize of the item.

 Seller can view the bid information for there items.

 Seller can bid for product.

3. Bidder

 Bidder can also search the items.

 Bidder can buy package for auction.

 Bidder can view detail of product.

 Bidder can bid on particular product.

 Bidder can also modify the bidding prize.

Functional Requirements:

 Each user type admin or user needs to register him or her as a user or an

admin for accessing the user’s necessary information. They also have email,

username and password. They can login into the system from the web using their

email and password.

 Admin needs to login to the system to operate the system. Admin has an

individual or unique login email, password and a user level. Through this email

and password admin can login into the system.

 Admin can update all product pages. An admin can insert a new product with

details and can update the product information through edit option.

 Admin can delete user from user panel. It can have the full access of user’s bid list.

 Admin can have access in the bid page.

 Users can look for a product from a selected category.

 User can add a product to the site with full details of that product.

 They can see their products and bided list through their account page.

 Users can edit their profiles.

Non-Functional Requirements:

105

1) Performance Requirements

1.1 Performance

The system must be interactive and the delays involved must be less .So in every action-

response of the system, there are no immediate delays. In case of opening windows forms, of

popping error messages and saving the settings or sessions there is delay much below 2

seconds, In case of opening databases, sorting questions and evaluation there are no delays

and the operation is performed in less than 2 seconds for opening ,sorting, computing,

106

posting > 95% of the files. Also when connecting to the server the delay is based

editing on the distance of the 2 systems and the configuration between them so

there is high probability that there will be or not a successful connection in less

than 20 seconds for sake of good communication.

1.2 Safety

Information transmission should be securely transmitted to server without any

changes in information

1.3 Reliability

As the system provides the right tools for discussion, problem solving it must

be made sure that the system is reliable in its operations and for securing the

sensitive details.

2) Software Quality Attributes

2.1 Availability

If the internet service gets disrupted while sending information to the server, the

information can be sending again for verification.

2.2 Security

The main security concern is for users account hence proper login mechanism

should be used to avoid hacking. The tablet id registration is way to spam check

for increasing the security. Hence, security is provided from unwanted use of

recognition software.

2.3 Usability

As the system is easy to handle and navigates in the most expected way with no

delays. In that case the system program reacts accordingly and transverses

quickly between its states.

107

Data Modeling

(1) Data Flow Diagram

108

(2) Data Dictionary

(2.1) UserInformation

Field

Name

Type

Constraint

User_id

Int

Primary key

User_nam

e

Varch

ar

Uniqu

e

First_nam

e

Varch

ar

Last_name

Varch

ar

Gender

Varch

ar

Email

Varch

ar

uniqu

e

Mobile

Varch

ar

password

Varch

ar

level

int

(2.2) Product Information

Field

Name

Type

Constrai

nt
P_id Int Primary

key
User_id Int Foreign

key
User_nam
e

Varch
ar

Title Varch
ar

109

Category Varch
ar

Brand Varch
ar

Descriptio
n

Text

Inti_price Float
Time Date
status varcha

r

(2.3) BIddingInformation

Field
Name

Type constraint

Bid_id Int Primary
key

User_id Int Foreign
key

Bid_init Float
Bid_price Float
P_id int Foreign

key

110

Software Designing

(1) Use case Diagram

Use Case Diagram for User panel

Use Case Diagram for Administrative panel

111

112

2) Activity Diagram

Activity Diagram for User panel

113

Activity Diagram for Admin panel

114

2)Sequence Diagram

115

Prototype models:

1. Home Page:
This Home Page is open When Customer can Open the Site.

2. Registration Form:
This page is used to customer can Registration here. But customer not enter

data so error will be occur.

116

117

3. Add Auction Item:
This page for user can not enter some data into the fields error will be occur.

4. Search Item:
This page for user can search Items.

118

119

5. Bid On Item:
This page for user can Bid On the Particular Item then package not available so

error will be occur.

6. Contact us :
This page for user have Any Query to Contact to the Company.

120

121

3.5PRE LAB QUESTIONS

1) Describe various phases of a software project.

2) Explain about various process models.

3.6LAB ASSIGNMENT

1) Analyze at which type of situations which process model can be used in a project.

2) Prepare Software Specification document (SRS) for the given project.

3.7POST LAB QUESTIONS

1) Explain various phases of a software project with brief description.

2) Explain how design can be constructed from analysis.

3) Describe the coding and testing process in a software project.

122

4.1 OBJECTIVE:

This project is mainly developed for the Account Division of a Banking sector

to provide better interface of the entire banking transactions. This system is

aimed to give a better out look to the user interfaces and to implement all the

banking transactions like:

•Supply of Account Information

•New Account Creations

•Deposits

•Withdraws

•Cheque book issues

•Stop payments

•Transfer of accounts

•Report Generations.

Proposed System:

The development of the new system contains the following activities, which try

to automate the entire process keeping in view of the database integration

approach.

•User friendliness is provided in the application with various controls.

•The system makes the overall project management much easier and flexible.

•Readily upload the latest updates, allows user to download the alerts by clicking the

URL.

•There is no risk of data mismanagement at any level while the project

development is under process.

• It provides high level of security with different level of authentication

Experiment - 4

ELECTRONIC CASH COUNTER

123

4.2 RESOURCE:

Problem Analysis and Project Planning

(1) Project Scope:

Internet Banking System refers to systems that enable bank customers to

Access accounts and general Information on bank products and services

through a personal computer or other intelligent device.

The chances and threats that the internet symbolizes is no longer news to the

present day banking sector. No traditional bank would dare face investment

analysts without an Internet strategy. The main intention behind the

commencement of electronic banking services is to provide the customers with

an alternative that is more responsive and with less expensive options. With

options just a click away, customers have more control than ever. Their

expectations are usability and real-time answers. They also want personal

attention and highly customized products and services. Internet banking

identifies a particular set of technological solutions for the development and the

distribution of financial services, which rely upon the open architecture of the

Internet. With the implementation of internet banking system, it maintain a direct

relationship with the end users via the web and are able to provide a personal

characterization to the interface, by offering additional customized services.

124

(2) Objectives:

The objective of this project is limited to the activities of the operations unit of

the banking system which includes opening of Account, Deposit and withdraw

of funds, Electronic funds transfer, Cheque balance and Monthly statement.

Software Requirement Analysis

(1)Module Description:

The Electronic cash counter Application project will be divided into 2 modules

namely:

1. Bank Account

2. Bank Account Administrator

Bank Account

In this module the customer is allowed to logon to the website and can access

his/her account by getting user name and password which will be verified with

the server and the database. Once he/she gets verified then they are allowed to

view their personal account and perform operations such as change of address,

paying bills online, viewing transactions and transferring money into other

accounts. Once the customer finishes the task the update information instantly

gets stored into the database. The customer is then allowed to sign out from

his/her account.

Bank Account Administrator

In this module the administrator is allowed to log on to the website and can access

his/her administrative account by using the user name and password which will

then be verified with

125

the database. Once he/she gets verified the administrative interface will be

displayed, where the administrator can perform operations for both new

customers and existing customers. Administrator will help a new customer

in opening their account by taking complete information from them.

Administrator provides services like withdrawal, deposit, transfer and deleting

customer during the time of closing the account. In this module administrator

provides great customer service to the customers who want to do phone

banking or teller banking. The interface for administrator will be both very

users friendly and efficient. The data gets stored in the database instantly when

the administrator hits the submit button. (2)Functional Requirements:

 Customer can request details of the last ‘n’ number of transactions he

has performed on any account.

 Customer can make a funds transfer to another account in the same bank.

 Customer can request for cheque book

 Customer can view his monthly statement. She/he can also take print out of the

same.

 Customer can make Electronic Fund Transfer’s to accounts at their and other

banks.

 The system is providing balance enquiry facility

(3) Non-Functional Requirements:

Those requirements which are not the functionalities of a system but are the

characteristics of a system are called the non-functionalities.

 Secure access of confidential data. Secure socket layer can be used.

 24X7 availability

 Better component design to get better performance at peak time

 Flexible service based architecture will be highly desirable for future extensions.

4.3 PROCEDURE:

Data Modeling

1) Context Level Diagram

126

127

Data

Dictionary

Customer

table

Name Null? Type

Customer_id
(PK)

NOT
NULL

INTEGER

Cust_first_nam
e

 VARCHAR2(2
0)

Cust_last_name VARCHAR2(2
0)

DOB VARCHAR2(2
0)

Gender VARCHAR2(2
)

Login table

Name Null? Type

Customer_id
(FK)

 INTEGER

Password VARCHAR2(3
0)

Username VARCHAR2(3
0)

Customer Detail table

Name Null? Type

Customer_id
(FK)

NOT
NULL

INTEGER

City VARCHAR2(2
0)

State VARCHAR2(2
0)

Zip VARCHAR2(2
0)

Phone Number NUMBER(10)

128

Email id VARCHAR2(2
0)

Credit Card table

Name Null? Type

Request Number NOT
NULL

INTEGER

Name VARCHAR2(3
0)

Profession VARCHAR2(3
0)

Annual Income INTEGER

Address VARCHAR2(3
0)

City VARCHAR2(3
0)

Telephone
Number

 VARCHAR2(3
0)

Card type VARCHAR2(3
0)

129

Account table

Name Null? Type

Account Number
(PK)

NOT
NULL

NUMBER(8)

Customer_id (FK) NOT
NULL

INTEGER

Min_Balance NUMBER(8)

Current_ balance NUMBER(8)

Recommended_ by VARCHAR2(2
0)

Nominee VARCHAR2(2
0)

Type_of_account VARCHAR2(2
0)

Date_of_opening VARCHAR2(2
0)

Date_of_access VARCHAR2(2
0)

Branch locator table
Name Null? Type
Location NOT

NULL
VARCHAR2(
30)

Branch_city VARCHAR2(
20)

Address VARCHAR2(
30)

Employee table

Name Null? Type

Employee_id (PK) NOT
NULL

NUMBER(10)

Name VARCHAR2(
20)

Working_from VARCHAR2(
20)

Age NUMBER(10)

Transaction(transfer-funds) table

Name Null? Type

Trans_id NOT
NULL

NUMBER(10)

130

Acc_no NUMBER(10)

Account_to NUMBER(10)

Amount NUMBER(10)

Transaction_da
te

 VARCHAR2(
20)

Trans_no INTEGER

description VARCHAR2(
30)

Transaction type table

Name Null? Type

Transaction Number
(PK)

NOT NULL INTEGER

Account Number
(FK)

NOT NULL INTEGER

131

Software Designing

1) Class diagram:

132

2) Use case Diagram

133

3) Activity Diagram

(3.1)Customer Activity Diagram

134

(3.2)Activity Diagram for Administrator

135

Prototype model

Prototype is a working model of software with some limited functionality.

The prototype does not always hold the exact logic used in the actual

software application and is an extra effort to be considered under effort

estimation.

Prototyping is used to allow the users evaluate developer proposals and try

them out before implementation. It also helps understand the requirements

which are user specific and may not have been considered by the developer

during product design.

4.4 PRE LAB QUESTIONS

1) Describe various phases of a software project.

2) Explain about various process models.

4.5 LAB ASSIGNMENT

1) Analyze at which type of situations which process model can be used in a

project.

2) Prepare Software Specification document (SRS) for the given project.

4.6 POST LAB QUESTIONS

1) Explain various phases of a software project with brief description.

2) Explain how design can be constructed from analysis.

3) Describe the coding and testing process in a software project.

136

C10P: DATABASE MANAGEMENT SYSTEMS

LABORATORY MANUAL

(Course: CC-10)

137

Create and use the following database schema to answer the given queries

EMPLOYEE Schema

Field

Eno

Type

Char(3)

NULL KEY

NO PRI

DEFAUL
T

NIL

Ename Varchar(50) NO NIL

Job_type Varchar(50) NO NIL

Manager Char(3) YES FK NIL

Hire_date Date NO NIL

Dno Integer YES FK NIL

Commission Decimal(10,2) YES NIL

Salary Decimal(7,2) NO NIL

DEPARTMENT Schema

Field Type NULL KEY DEFAULT

Dno Integer NO PRI NUL

Dname Varchar(50) YES NUL

Location Varchar(50) YES New Delhi

Query List

1. Query to display Employee Name, Job, Hire Date, Employee Number; for each

employee with the Employee Number appearing first.

2. Query to display unique Jobs from the Employee Table.

3. Query to display the Employee Name concatenated by a Job separated by a comma.

4. Query to display all the data from the Employee Table. Separate each Column by

a comma and name the said column as THE_OUTPUT.

5. Query to display the Employee Name and Salary of all the employees earning

more than

$2850.

6. Query to display Employee Name and Department Number for the Employee No=

7900.

138

7. Query to display Employee Name and Salary for all employees whose salary is

not in the range of $1500 and $2850.

8. Query to display Employee Name and Department No. of all the employees in

Dept 10 and Dept 30 in the alphabetical order by name.

9. Query to display Name and Hire Date of every Employee who was hired in 1981.

10. Query to display Name and Job of all employees who don‘t have a current Manager.

11. Query to display the Name, Salary and Commission for all the employees who

earn commission. Sort the data in descending order of Salary and Commission.

12. Query to display Name of all the employees where the third letter of their name is

‗A‘.

13. Query to display Name of all employees either have two ‗R‘s or have two ‗A‘s in

their name and are either in Dept No = 30 or their Manger‘s Employee No = 7788.

14. Query to display Name, Salary and Commission for all employees whose

Commission Amount is 14 greater than their Salary increased by 5%.

15. Query to display the Current Date.

16. Query to display Name, Hire Date and Salary Review Date which is the 1st

Monday after six months of employment.

17. Query to display Name and calculate the number of months between today and

the date each employee was hired.

18. Query to display the following for each employee <E-Name> earns < Salary>

monthly but wants < 3 * Current Salary >. Label the Column as Dream Salary.

19. Query to display Name with the 1st letter capitalized and all other letter lower

case and
length of their name of all the employees whose name starts with ‗J‘, ‘A‘ and ‗M‘.

20. Query to display Name, Hire Date and Day of the week on which the employee

started.

21. Query to display Name, Department Name and Department No for all the

employees.

22. Query to display Unique Listing of all Jobs that are in Department # 30.

23. Query to display Name, Dept Name of all employees who have an ‗ A‘ in their

139

name.

24. Query to display Name, Job, Department No. and Department Name for all the

employees working at the Dallas location.

25. Query to display Name and Employee no. Along with their Manger‘s Name and the

Manager‘s employee no; along with the Employees‘ Name who do not have a

Manager.

26. Query to display Name, Dept No. and Salary of any employee whose department

No. and salary matches both the department no. and the salary of any employee who

earns a commission.

27. Query to display Name and Salaries represented by asterisks, where each asterisk

(*) signifies $100.

28. Query to display the Highest, Lowest, Sum and Average Salaries of all the

employees

29. Query to display the number of employees performing the same Job type functions.

30. Query to display the no. of managers without listing their names.

31. Query to display the Department Name, Location Name, No. of Employees and the

average salary for all employees in that department.

32. Query to display Name and Hire Date for all employees in the same dept. as Blake.

33. Query to display the Employee No. and Name for all employees who earn more than

the average salary.

34. Query to display Employee Number and Name for all employees who work in a

department
with any employee whose name contains a ‗T‘.

35. Query to display the names and salaries of all employees who report to King.

36. Query to display the department no, name and job for all employees in the Sales

department.

140

Table Creation

SQL> create table department(Dno number(10), Dname varchar2(20), Location

varchar2(20), primary key (Dno));

SQL> create table employee(Eno char(3), Ename varchar2(20), Job_type

varchar2(20), Manager char(3), Hire_date date, Dno number(10), Commission

decimal(10, 2), Salary decimal(7,2), primary key(Eno), constraint Dno foreign

key (Dno) references department (Dno));

Table Description

SQL> desc department

 Name Null? Type

 --- -------- ----------------------------

 DNO NOT NULL NUMBER(10)

 DNAME VARCHAR2(20)

 LOCATION VARCHAR2(20)

SQL> desc employee;

 Name Null? Type

 --- -------- ----------------------------

 ENO NOT NULL CHAR(3)

 ENAME VARCHAR2(20)

 JOB_TYPE VARCHAR2(20)

 MANAGER CHAR(3)

 HIRE_DATE DATE

 DNO NUMBER(10)

 COMMISSION NUMBER(10,2)

 SALARY NUMBER(7,2)

141

Insertion of values to Tables

Department Table

SQL> insert into department values(10, 'Accounting', 'New York');

1 row created.

SQL> insert into department values(20, 'Research', 'Dallas');

1 row created.

SQL> insert into department values(30, 'Sales', 'Chicago');

1 row created.

SQL> insert into department values(40, 'Operation', 'Boston');

1 row created.

SQL> insert into department values(50, 'Marketing', 'New Delhi');

1 row created.

SQL> select * from department;

 DNO DNAME LOCATION

---------- -------------------- --------------------

 10 Accounting New York

142

 20 Research Dallas

 30 Sales Chicago

 40 Operation Boston

 50 Marketing New Delhi

Employee Table

SQL> insert into employee values('736', 'Smith', 'Clerk', '790',

to_date('17/12/1981','dd/mm/yyyy'), 20, 0.00, 1000.00);

1 row created.

SQL> insert into employee values('749', 'Allan', 'Sales_man', '769',

to_date('20/02/1981','dd/mm/yyyy'), 30, 300.00, 2000.00);

1 row created.

SQL> insert into employee values('752', 'Ward', 'Sales_man', '769',

to_date('22/02/1981','dd/mm/yyyy'), 30, 500.00, 1300.00);

1 row created.

SQL> insert into employee values('756', 'Jones', 'Manager', '783',

to_date('02/04/1981','dd/mm/yyyy'), 20, 0.00, 2300.00);

1 row created.

SQL> insert into employee values('765', 'Martin', 'Sales_man', '784',

to_date('22/04/1981','dd/mm/yyyy'), 30, 1400.00, 1250.00);

143

1 row created.

SQL> insert into employee values('769', 'Blake', 'Manager', '783',

to_date('01/05/1981','dd/mm/yyyy'), 30, 0.00, 2870.00);

1 row created.

SQL> insert into employee values('778', 'Clark', 'Manager', '783',

to_date('09/06/1981','dd/mm/yyyy'), 10, 0.00, 2900.00);

1 row created.

SQL> insert into employee values('783', 'King', 'President', NULL,

to_date('17/11/1981','dd/mm/yyyy'), 10, 0.00, 2950.00);

1 row created.

SQL> insert into employee values('784', 'Turner', 'Sales_man', '769',

to_date('08/09/1981','dd/mm/yyyy'), 30, 0.00, 1450.00);

1 row created.

SQL> commit;

Commit complete.

SQL> insert into employee values('787', 'Adams', 'Clerk', '778',

to_date('12/01/1983','dd/mm/yyyy'), 20, 0.00, 1150.00);

144

1 row created.

SQL> insert into employee values('788', 'Scott', 'Analyst', '756',

to_date('09/12/1982','dd/mm/yyyy'), 20, 0.00, 2850.00);

1 row created.

SQL> insert into employee values('790', 'James', 'Clerk', '769',

to_date('03/12/1981','dd/mm/yyyy'), 30, 0.00, 950.00);

1 row created.

SQL> insert into employee values('792', 'Ford', 'Analyst', '756',

to_date('03/12/1981','dd/mm/yyyy'), 20, 0.00, 2600.00);

1 row created.

SQL> insert into employee values('793', 'Miller', 'Clerk', '788',

to_date('23/01/1982','dd/mm/yyyy'), 40, 0.00, 1300.00);

1 row created.

SQL> select * from employee;

ENO ENAME JOB_TYPE MAN HIRE_DATE DNO

--- -------------------- -------------------- --- --------- ----------

COMMISSION SALARY

---------- ----------

788 Scott Analyst 756 09-DEC-82 20

 0 2850

145

736 Smith Clerk 790 17-DEC-81 20

 0 1000

749 Allan Sales_man 769 20-FEB-81 30

 300 2000

ENO ENAME JOB_TYPE MAN HIRE_DATE DNO

--- -------------------- -------------------- --- --------- ----------

COMMISSION SALARY

---------- ----------

752 Ward Sales_man 769 22-FEB-81 30

 500 1300

756 Jones Manager 783 02-APR-81 20

 0 2300

765 Martin Sales_man 784 22-APR-81 30

 1400 1250

ENO ENAME JOB_TYPE MAN HIRE_DATE DNO

--- -------------------- -------------------- --- --------- ----------

COMMISSION SALARY

---------- ----------

769 Blake Manager 783 01-MAY-81 30

146

 0 2870

778 Clark Manager 783 09-JUN-81 10

 0 2900

783 King President 17-NOV-81 10

 0 2950

ENO ENAME JOB_TYPE MAN HIRE_DATE DNO

--- -------------------- -------------------- --- --------- ----------

COMMISSION SALARY

---------- ----------

784 Turner Sales_man 769 08-SEP-81 30

 0 1450

787 Adams Clerk 778 12-JAN-83 20

 0 1150

793 Miller Clerk 788 23-JAN-82 40

 0 1300

ENO ENAME JOB_TYPE MAN HIRE_DATE DNO

--- -------------------- -------------------- --- --------- ----------

COMMISSION SALARY

---------- ----------

147

790 James Clerk 769 03-DEC-81 30

 0 950

792 Ford Analyst 756 03-DEC-81 20

14 2600

14 rows selected.

1. Query to display Employee Name, Job, Hire Date, Employee

Number; for each employee with the Employee Number appearing

first.

SQL> select Eno, Ename, Job_type, Hire_date from employee;

ENO ENAME JOB_TYPE HIRE_DATE

--- -------------------- -------------------- ---------

788 Scott Analyst 09-DEC-82

736 Smith Clerk 17-DEC-81

749 Allan Sales_man 20-FEB-81

752 Ward Sales_man 22-FEB-81

756 Jones Manager 02-APR-81

765 Martin Sales_man 22-APR-81

769 Blake Manager 01-MAY-81

778 Clark Manager 09-JUN-81

783 King President 17-NOV-81

784 Turner Sales_man 08-SEP-81

787 Adams Clerk 12-JAN-83

790 James Clerk 03-DEC-81

792 Ford Analyst 03-DEC-81

793 Miller Clerk 23-JAN-82

2. Query to display unique Jobs from the Employee Table.

SQL> select distinct Job_type from employee;

JOB_TYPE

Analyst

148

Clerk

Manager

President

Sales_man

3. Query to display the Employee Name concatenated by a Job

separated by a comma.

SQL> select Ename||', '|| Job_type as Name_Job from employee;

NAME_JOB

--

Scott, Analyst

Smith, Clerk

Allan, Sales_man

Ward, Sales_man

Jones, Manager

Martin, Sales_man

Blake, Manager

Clark, Manager

King, President

Turner, Sales_man

Adams, Clerk

Miller, Clerk

James, Clerk

Ford, Analyst

14 rows selected.

4. Query to display all the data from the Employee Table. Separate each

Column by a comma and name the said column as THE_OUTPUT.

SQL> select Eno||', '||Ename||', '||Job_type||', '||Manager||', '||Hire_date||',

'||Dno||', '||Commission||', '||Salary from employee ;

ENO||','||ENAME||','||JOB_TYPE||','||MANAGER||','||HIRE_DATE||','||DN

O||','||COM

--

788, Scott, Analyst, 756, 09-DEC-82, 20, 0, 2850

736, Smith, Clerk, 790, 17-DEC-81, 20, 0, 1000

749, Allan, Sales_man, 769, 20-FEB-81, 30, 300, 2000

752, Ward, Sales_man, 769, 22-FEB-81, 30, 500, 1300

149

756, Jones, Manager, 783, 02-APR-81, 20, 0, 2300

765, Martin, Sales_man, 784, 22-APR-81, 30, 1400, 1250

769, Blake, Manager, 783, 01-MAY-81, 30, 0, 2870

778, Clark, Manager, 783, 09-JUN-81, 10, 0, 2900

783, King, President, , 17-NOV-81, 10, 0, 2950

784, Turner, Sales_man, 769, 08-SEP-81, 30, 0, 1450

787, Adams, Clerk, 778, 12-JAN-83, 20, 0, 1150

793, Miller, Clerk, 788, 23-JAN-82, 40, 0, 1300

790, James, Clerk, 769, 03-DEC-81, 30, 0, 950

792, Ford, Analyst, 756, 03-DEC-81, 20, 0, 2600

14 rows selected.

5. Query to display the Employee Name and Salary of all the employees

earning more than $2850.

SQL> select Ename, salary from employee where

(salary+commission)>2850;

ENAME SALARY

-------------------- ----------

Blake 2870

Clark 2900

King 2950

6. Query to display Employee Name and Department Number for the

Employee No= 790.

SQL> select Ename, Dno from employee where Eno='790';

ENAME DNO

-------------------- ----------

James 30

7. Query to display Employee Name and Salary for all employees whose

salary is not in the range of $1500 and $2850.

SQL> select Ename, salary from employee where salary not between

1500 and 2850;

ENAME SALARY

-------------------- ----------

Smith 1000

150

Ward 1300

Martin 1250

Blake 2870

Clark 2900

King 2950

Turner 1450

Adams 1150

Miller 1300

James 950

10 rows selected.

8. Query to display Employee Name and Department No. Of all the

employees in Dept 10 and Dept 30 in the alphabetical order by name.

SQL> select Ename, Dno from employee where (Dno=10 or Dno=30)

order by (Ename);

ENAME DNO

-------------------- ----------

Allan 30

Blake 30

Clark 10

James 30

King 10

Martin 30

Turner 30

Ward 30

8 rows selected.

9. Query to display Name and Hire Date of every Employee who was

hired in 1981.

SQL> select Ename, Hire_date from employee where to_char(Hire_date,

'yyyy')='1981';

ENAME HIRE_DATE

-------------------- ---------

Smith 17-DEC-81

Allan 20-FEB-81

151

Ward 22-FEB-81

Jones 02-APR-81

Martin 22-APR-81

Blake 01-MAY-81

Clark 09-JUN-81

King 17-NOV-81

Turner 08-SEP-81

James 03-DEC-81

Ford 03-DEC-81

11 rows selected.

10. Query to display Name and Job of all employees who don’t have a

current Manager.

SQL> select Ename, Job_type from employee where Manager is NULL;

ENAME JOB_TYPE

-------------------- --------------------

King President

11. Query to display the Name, Salary and Commission for all the

employees who earn commission. Sort the data in descending order

of Salary and Commission.

SQL> select Ename, Salary, Commission from employee where

(Commission > 0.00) order by (Salary) desc;

ENAME SALARY COMMISSION

-------------------- ---------- ----------

Allan 2000 300

Ward 1300 500

Martin 1250 1400

12. Query to display Name of all the employees where the third letter of

their name is ‘a’.

SQL> select Ename from employee where Ename like '__a%';

ENAME

152

Blake

Clark

Adams

13. Query to display Name of all employees either have two ‘r’s or have

two ‘a’s in their name and are either in Dept No = 30 or their

Manger’s Employee No = 778.

SQL> select Ename, Dno, Manager from employee where Ename like

'%a%a' or Ename like '%r%r' and Dno=30 or Manager='778';

ENAME DNO MAN

-------------------- ---------- ---

Turner 30 769

Adams 20 778

14. Query to display Name, Salary and Commission for all employees

whose Commission Amount is greater than their Salary increased by

5%.

SQL> select Ename, Salary, Commission from employee where

Commission > (Salary + Salary * 0.05);

ENAME SALARY COMMISSION

-------------------- ---------- ----------

Martin 1250 1400

15. Query to display the Current Date.

SQL> select Sysdate from Dual;

SYSDATE

25-JUN-23

16. Query to display Name, Hire Date and Salary Review Date which is

the 1st Monday after six months of employment.

153

SQL> SELECT Ename,

Hire_date,TO_CHAR(NEXT_DAY(ADD_MONTHS(Hire_date, 6),

'MONDAY'),'fmDay, " the " Ddspth " of " Month, YYYY') as "REVIEW"

FROM employee;

ENAME HIRE_DATE

-------------------- ---------

REVIEW

--

Scott 09-DEC-82

Monday, the Thirteenth of June, 1983

Smith 17-DEC-81

Monday, the Twenty-First of June, 1982

Allan 20-FEB-81

Monday, the Twenty-Fourth of August, 1981

ENAME HIRE_DATE

-------------------- ---------

REVIEW

--

Ward 22-FEB-81

Monday, the Twenty-Fourth of August, 1981

Jones 02-APR-81

Monday, the Fifth of October, 1981

Martin 22-APR-81

Monday, the Twenty-Sixth of October, 1981

ENAME HIRE_DATE

-------------------- ---------

REVIEW

--

Blake 01-MAY-81

Monday, the Second of November, 1981

154

Clark 09-JUN-81

Monday, the Fourteenth of December, 1981

King 17-NOV-81

Monday, the Twenty-Fourth of May, 1982

ENAME HIRE_DATE

-------------------- ---------

REVIEW

--

Turner 08-SEP-81

Monday, the Fifteenth of March, 1982

Adams 12-JAN-83

Monday, the Eighteenth of July, 1983

Miller 23-JAN-82

Monday, the Twenty-Sixth of July, 1982

ENAME HIRE_DATE

-------------------- ---------

REVIEW

--

James 03-DEC-81

Monday, the Seventh of June, 1982

Ford 03-DEC-81

Monday, the Seventh of June, 1982

14 rows selected.

17. Query to display Name and calculate the number of months between

today and the date each employee was hired.

SQL> select Ename, Round(Months_Between(sysdate,Hire_date)) as

"Months_Worked" from employee;

155

ENAME Months_Worked

-------------------- -------------

Scott 487

Smith 498

Allan 508

Ward 508

Jones 507

Martin 506

Blake 506

Clark 505

King 499

Turner 502

Adams 485

Miller 497

James 499

Ford 499

14 rows selected.

18. Query to display the following for each employee:- <E-Name> earns

< Salary> monthly but wants < 3 * Current Salary >. Label the

Column as Dream Salary.

SQL> select Ename||' earns $'||Salary||' monthly but wants $'||salary*3

"Dream Salary" from employee;

Dream Salary

--

Scott earns $2850 monthly but wants $8550

Smith earns $1000 monthly but wants $3000

Allan earns $2000 monthly but wants $6000

Ward earns $1300 monthly but wants $3900

Jones earns $2300 monthly but wants $6900

Martin earns $1250 monthly but wants $3750

Blake earns $2870 monthly but wants $8610

Clark earns $2900 monthly but wants $8700

King earns $2950 monthly but wants $8850

Turner earns $1450 monthly but wants $4350

Adams earns $1150 monthly but wants $3450

Miller earns $1300 monthly but wants $3900

156

James earns $950 monthly but wants $2850

Ford earns $2600 monthly but wants $7800

14 rows selected.

19. Query to display Name with the 1st letter capitalized and all other

letter lower case and length of their name of all the employees whose

name starts with ‘J’, ’A’ and ‘M’.

SQL> select initcap(Ename) "Name", length(Ename) "Length of Name"

from employee where Ename like 'J%' or Ename like 'A%'

 or Ename like 'M%' order by Ename;

Name Length of Name

-------------------- --------------

Adams 5

Allan 5

James 5

Jones 5

Martin 6

Miller 6

6 rows selected.

20. Query to display Name, Hire Date and Day of the week on which the

employee started.

SQL> SELECT Ename, Hire_date, TO_CHAR(Hire_date,'DAY') AS

DAY FROM employee ORDER BY Hire_date, DAY;

ENAME HIRE_DATE DAY

-------------------- --------- ---------

Allan 20-FEB-81 FRIDAY

Ward 22-FEB-81 SUNDAY

Jones 02-APR-81 THURSDAY

Martin 22-APR-81 WEDNESDAY

Blake 01-MAY-81 FRIDAY

Clark 09-JUN-81 TUESDAY

Turner 08-SEP-81 TUESDAY

King 17-NOV-81 TUESDAY

157

James 03-DEC-81 THURSDAY

Ford 03-DEC-81 THURSDAY

Smith 17-DEC-81 THURSDAY

Miller 23-JAN-82 SATURDAY

Scott 09-DEC-82 THURSDAY

Adams 12-JAN-83 WEDNESDAY

14 rows selected.

21. Query to display Name, Department Name and Department No for

all the employees.

SQL> select employee.Ename,department.Dname,employee.Dno from

employee, department where employee.Dno=department.Dno;

ENAME DNAME DNO

-------------------- -------------------- ----------

Scott Research 20

Smith Research 20

Allan Sales 30

Ward Sales 30

Jones Research 20

Martin Sales 30

Blake Sales 30

Clark Accounting 10

King Accounting 10

Turner Sales 30

Adams Research 20

Miller Operation 40

James Sales 30

Ford Research 20

14 rows selected.

22. Query to display Unique Listing of all Jobs that are in Department #

30.

SQL> select distinct Job_type from employee where Dno=30;

JOB_TYPE

158

Manager

Clerk

Sales_man

23. Query to display Name, Dept Name of all employees who have an ‘a’

in their name.

SQL> select employee.Ename,department.Dname from

employee,department where employee.Ename like '%a%' and

employee.Dno=department.Dno;

ENAME DNAME

-------------------- --------------------

Allan Sales

Ward Sales

Martin Sales

Blake Sales

Clark Accounting

Adams Research

James Sales

7 rows selected.

24. Query to display Name, Job, Department No. And Department Name

for all the employees working at the Dallas location.

SQL> select employee.Ename, employee.Job_type, employee.Dno,

department.Dname from employee,department where

employee.Dno=department.Dno and department.Location='Dallas';

ENAME JOB_TYPE DNO DNAME

-------------------- -------------------- ---------- --------------------

Scott Analyst 20 Research

Smith Clerk 20 Research

Jones Manager 20 Research

Adams Clerk 20 Research

Ford Analyst 20 Research

159

25. Query to display Name and Employee no. Along with their Manger’s

Name and the Manager’s employee no; along with the Employees’

Name who do not have a Manager.

SQL> select e.Ename,e.Eno,d.Ename,d.Eno from employee e left outer

join employee d ON e.Eno=d.Manager;

ENAME ENO ENAME ENO

-------------------- --- -------------------- ---

Jones 756 Scott 788

James 790 Smith 736

Blake 769 Allan 749

Blake 769 Ward 752

King 783 Jones 756

Turner 784 Martin 765

King 783 Blake 769

King 783 Clark 778

Blake 769 Turner 784

Clark 778 Adams 787

Scott 788 Miller 793

ENAME ENO ENAME ENO

-------------------- --- -------------------- ---

Blake 769 James 790

Jones 756 Ford 792

Miller 793

Ward 752

Martin 765

Smith 736

Allan 749

Ford 792

Adams 787

20 rows selected.

26. Query to display Name, Dept No. And Salary of any employee whose

department No. And salary matches both the department no. And the

salary of any employee who earns a commission.

160

SQL> select Ename,Dno,Salary from employee where (Dno,Salary) in

(select Dno,Salary from employee where Commission>0);

ENAME DNO SALARY

-------------------- ---------- ----------

Allan 30 2000

Ward 30 1300

Martin 30 1250

27. Query to display Name and Salaries represented by asterisks, where

each asterisk (*) signifies $100.

SQL> select Ename, RPAD('*', Salary/100) as Salary_Representation

from employee;

ENAME

SALARY_REPRESENTATION

--

Scott

*

Smith

*

Allan

*

ENAME

SALARY_REPRESENTATION

--

Ward

*

Jones

*

Martin

*

161

ENAME

SALARY_REPRESENTATION

--

Blake

*

Clark

*

King

*

ENAME

SALARY_REPRESENTATION

--

Turner

*

Adams

*

Miller

*

ENAME

SALARY_REPRESENTATION

--

James

*

Ford

*

162

14 rows selected.

SQL> select Ename, RPAD('*', Salary/100) as Salary_Representation

from employee;

ENAME

SALARY_REPRESENTATION

--

Scott

*

Smith

*

Allan

*

ENAME

SALARY_REPRESENTATION

--

Ward

*

Jones

*

Martin

*

ENAME

SALARY_REPRESENTATION

--

Blake

*

163

Clark

*

King

*

ENAME

SALARY_REPRESENTATION

--

Turner

*

Adams

*

Miller

*

ENAME

SALARY_REPRESENTATION

--

James

*

Ford

*

14 rows selected.

SQL> SELECT Ename, RPAD('*', CEIL(Salary/100), '*') as

Salary_Representation FROM employee;

ENAME

164

SALARY_REPRESENTATION

--

Scott

Smith

Allan

ENAME

SALARY_REPRESENTATION

--

Ward

Jones

Martin

ENAME

SALARY_REPRESENTATION

--

Blake

Clark

King

165

ENAME

SALARY_REPRESENTATION

--

Turner

Adams

Miller

ENAME

SALARY_REPRESENTATION

--

James

Ford

14 rows selected.

SQL> SELECT Ename, RPAD('*', (Salary/100), '*') as

Salary_Representation FROM employee;

ENAME

SALARY_REPRESENTATION

--

Scott

Smith

166

Allan

ENAME

SALARY_REPRESENTATION

--

Ward

Jones

Martin

ENAME

SALARY_REPRESENTATION

--

Blake

Clark

King

ENAME

SALARY_REPRESENTATION

--

Turner

167

Adams

Miller

ENAME

SALARY_REPRESENTATION

--

James

Ford

14 rows selected.

28. Query to display the Highest, Lowest, Sum and Average Salaries of

all the employees.

SQL> select MAX(Salary),MIN(Salary),SUM(Salary),AVG(Salary) from

employee;

MAX(SALARY) MIN(SALARY) SUM(SALARY) AVG(SALARY)

----------- ----------- ----------- -----------

 2950 950 26870 1919.28571

29. Query to display the number of employees performing the same Job

type functions.

SQL> select Job_type,COUNT(*) from employee group by Job_type;

JOB_TYPE COUNT(*)

-------------------- ----------

Analyst 2

Clerk 4

168

Manager 3

President 1

Sales_man 4

30. Query to display the no. Of managers without listing their names.

SQL> select COUNT(DISTINCT Manager) from employee;

COUNT(DISTINCTMANAGER)

 7

31. Query to display the Department Name, Location Name, No. Of

Employees and the average salary for all employees in that

department.

SQL> SELECT d.Dname, d.Location, COUNT(*), AVG(e.Salary) from

Department d JOIN Employee e ON d.Dno = e.Dno GROUP BY

d.Dname, d.Location;

DNAME LOCATION COUNT(*) AVG(E.SALARY)

-------------------- -------------------- ---------- -------------

Research Dallas 5 1980

Sales Chicago 6 1636.66667

Accounting New York 2 2925

Operation Boston 1 1300

32. Query to display Name and Hire Date for all employees in the same

dept. As Blake.

SQL> select Ename,Hire_date from employee where Dno=(select Dno

from employee where Ename='Blake');

ENAME HIRE_DATE

-------------------- ---------

Allan 20-FEB-81

Ward 22-FEB-81

Martin 22-APR-81

Blake 01-MAY-81

Turner 08-SEP-81

James 03-DEC-81

169

6 rows selected.

33. Query to display the Employee No. And Name for all employees who

earn more than the average salary.

SQL> select Eno,Ename from employee where Salary > (Select

AVG(Salary) from employee);

ENO ENAME

--- --------------------

788 Scott

749 Allan

756 Jones

769 Blake

778 Clark

783 King

792 Ford

7 rows selected.

34. Query to display Employee Number and Name for all employees who

work in a department with any employee whose name contains a ‘t’.

SQL> select e.Eno,e.Ename from employee e ,employee d where

e.Manager=d.Eno and d.Ename like '%t%';

ENO ENAME

--- --------------------

793 Miller

35. Query to display the names and salaries of all employees who report

to King.

SQL> select Ename,Salary from employee where Manager=(select Eno

from employee where Ename='King');

ENAME SALARY

-------------------- ----------

Jones 2300

Blake 2870

170

Clark 2900

36. Query to display the department no, name and job for all employees

in the Sales department.

SQL> select e.Dno,e.Ename,e.Job_type from employee e,department d

where d.Dno=e.Dno and d.Dname='Sales';

 DNO ENAME JOB_TYPE

---------- -------------------- --------------------

 30 Allan Sales_man

 30 Ward Sales_man

 30 Martin Sales_man

 30 Blake Manager

 30 Turner Sales_man

 30 James Clerk

6 rows selected.

171

SEC2P: SOFTWARE LABORATORY

MANUAL ON HTML

(Course: SEC-2)

172

Q.1 Create an HTML document with the following formatting options:

 Bold

 Italics

 Underline

 Headings (Using H1 to H6 heading styles)

 Font (Type, Size and Color)

 Background (Colored background/Image in background)

 Paragraph

 Line Break

 Horizontal Rule

 Pre tag

Program:

<html>

 <head>

 <title>

 Assignment1

 </title>

 </head>

 <body bgcolor="cadetblue">

 <!-- <body background="mcc.jpg"> -->

 <center>

Midnapore City College

 </center>

 <i>B.Sc. Fourth Semester</i>

 <h1>Programming in C/C++</h1>

 <h2>JavaScript</h2>

 <h3>Python</h3>

 <h4>HTML</h4>

 <h5>CSS</h5>

 <h6>Java</h6>

 <hr>

173

 <p>Welcome to Midnapore City College department of <u>Computer Science

and Computer Application</u>.</p>

 <pre>

Text in a pre-element is displayed in a fixed-width font, and the text preserves

both spaces and line breaks.

The text will be displayed exactly as written in the HTML source

code.

 </pre>

 </body>

</html>

Output:

Q.2 Create an HTML document which consists of:

I. Ordered List

II. Unordered List

III. Nested List

174

IV. Image

Fig 2.1 Fig-2.2

Fig 2.1 Program:

<html>

 <head>

 <title>Assignment2</title>

 </head>

 <body>

 XYZ Ltd's Update

 Introduction

 Company Financial Update

 First Quarter

 Second Quarter

 Third Quarter

 Fourth Quarter

 Advertising Update

175

 Result of Newspaper Campaign

 Additions to staff

 New Thoughts on Television

 Human Resources Update

 </body>

</html>

Output:

Fig 2.2 Program:

<html>

 <head>

 <title>Assignment2.2</title>

 </head>

 <body>

 <ol type="A">

 Saftey Considerations

 <ol type="1">

 Boday substance isolation

 Sense safty

176

 Initial size-up

 Intitial Patient Assessment

 <ol type="1">

 General Impression

 Unresponsiveness

 <ol type="i">

 Alert to person, place and time

 Verbal response to audible stimuli

 Pain evokes verbal or physical response

 Unresponsive to all stimuli

 Patient Critical Needs

 <ol type="1">

 Airway

 Breathing

 <ol type="i">

 Use oxygen if indicated

 Consider use of assisting with bag value mask

 Circulation

 Bleeding

 </<body>

</html>

Output:

177

Q.3 Create an HTML document which implements Internal linking as well as

external linking.

Program:

<html>

 <head>

 <title> InternalLinkingExternalLinking</title>

 </head>

 <body>

 <header>

 <h1 id="top">Internal Linking Page Demo: </h1>

 </header>

 <section>

 <!-- Internal Linking Same page-->

 Introduction

 Example

 FirstPage

 </section>

 <header>

 <h1 id="top">External Linking Page Demo: </h1>

 </header>

 <section>

 Go to college

home page

 Go to amazon

home page

 </section>

 <section id="section1">

 Introduction

 <pre>

 What is HTML?

 HTML stands for Hyper Text Markup Language

 HTML is the standard markup language for creating Web pages

 HTML describes the structure of a Web page

 HTML consists of a series of elements

178

 HTML elements tell the browser how to display the content

 HTML elements label pieces of content such as "this is a heading",

 "this is a paragraph", "this is a link", etc.

 </pre>

 </section>

 <section id="section2">

Example Explained

<pre>

 The <!DOCTYPE html> declaration defines that this document is an HTML5

document

 The (html) element is the root element of an HTML page

 The (head) element contains meta information about the HTML page

 The (title) element specifies a title for the HTML page (which is shown in the

browser's title bar or in the page's tab)

 The (body) element defines the document's body, and is a container for all the

visible contents, such as headings, paragraphs, images, hyperlinks, tables, lists,

etc.

 The (h1) element defines a large heading

 The (p) element defines a paragraph

</pre>

 </section>

 <section id="section3">

 <p>

 Back to Page Heading or

 Back to Top of Page

 </p>

 </section>

 </body>

</html>

Output:

Internal Linking:

179

External Linking:

Q.4 Create a table using HTML which consists of columns for Roll No., Student

‘s name and grade.

Result

Name Name Grade

180

Program:

<html>

 <head>

 <title>

 StudentDetailsUsingTable

 </title>

 <style>

table, th, td {

 border: 1px solid red;

 border-collapse: collapse;

}

 </style>

 </head>

 <body>

 <table width="30%">

 <caption>Students Grade Details Using Table </caption>

 <tr>

 <th colspan="3">Result</th>

 </tr>

 <tr>

 <th>Roll No.</th>

 <th>Name</th>

 <th>Grade</th>

 </tr>

 <tr>

 <td> </td>

 <td> </td>

 <td> </td>

 </tr>

 <tr>

 <td> </td>

 <td> </td>

 <td> </td>

 </tr>

 <tr>

181

 <td> </td>

 <td> </td>

 <td> </td>

 </tr>

 <tr>

 <td> </td>

 <td> </td>

 <td> </td>

 </tr>

 </table>

 </body>

</html>

Output:

Q.5 Create a Table with the following view:

Please an image here

Program:

<html>

182

 <head>

 <title>

 TableDesign

 </title>

 <style>

table, th, td {

border: 1px solid red;

border-collapse: collapse;

}

 </style>

 </head>

 <body>

 <table width="50%">

 <tr>

 <th colspan="2"> </th>

 <th colspan="2"> </th>

 <th colspan="2"> </th>

 <th colspan="2"> </th>

 <th colspan="2"> </th>

 <th colspan="2"> </th>

 </tr>

 <tr>

 <td colspan="6"><center> </center></td>

 <td colspan="6" rowspan="3"><center> <img src="mcc.jpg" width="30"

height="40" alt="Please an image here"> </center></td>

 </tr>

 <tr>

 <td colspan="6"><center> </center></td>

 <!-- <td colspan="6"><center> Six Column Marge </center></td> -->

 </tr>

 <tr>

 <td colspan="6"><center> </center></td>

 <!-- <td colspan="6"><center> six Column Marge </center></td> -->

 </tr>

 </table>

 </body>

</html>

Output:

183

Q.6 Create a form using HTML which has the following types of controls:

 I. Text Box

II. Option/radio buttons

III. Check boxes

IV. Reset and Submit buttons

Program:

<head>

 <h1>

 Subscribe to XYZ News Magazines and Emails

 </h1>

 <style>

 #line {

184

 border-bottom: 1px solid green;

 margin-top: 40px;

 }

 #gap {

 margin-top: 40px;

 }

 #select {

 padding: 5px;

 margin-top: 5px;

 width: 30%;

 border: 1px solid blue;

 }

 .btn {

 margin-top: 15px;

 padding: 5px;

 cursor: pointer;

 width: 10%;

 border-radius: 5px;

 border: 1px solid blue;

 }

 .btn:hover {

 border: 2px solid darkblue;

 background-color: lightblue;

 }

 #a {

 margin-left: 5px;

 }

 #b {

 margin-left: 10px;

 }

 #sme {

 accent-color: green;

 }

185

 </style>

</head>

<body>

 <p>

 Interested in receiving daily small updates of all latest News? Well, now you

can. And best of all, it is free! Just out of this form and submit it by clicking the

"send it In" button. we will put you on our mailing list and you will receive your

first

 email in 3-5 days.

 </p>

 <div class="line" id="line">

 </div>

 <div class="items" id="items">

 <p id="gap">

 Please fill the following boxes to help us send the emails and our news

letter.

 </p>

 <div>

 <label>First name:</label>

 <input id="select" type="text" maxlength="20" required>

 </div>

 <div>

 <label>Last name:</label>

 <input id="select" type="text" maxlength="20" required>

 </div>

 <div>

 <label>Business:</label>

 <input id="select" type="text" maxlength="200" required>

 </div>

 <div>

 <p>

 We must have a correct e-mail address to send you the news letter.

 </p>

 </div>

 <div>

 <label>Email:</label>

 <input id="select" type="email" required>

186

 </div>

 <div>

 <p>

 How did you hear about XYZ News Magazines and Email?

 </p>

 </div>

 <div>

 <input type="radio" id="sme" name="sme"> <label>Here on the

Web</label>

 <input type="radio" id="sme" name="sme"> <label>In a

Magazine</label>

 <input type="radio" id="sme" name="sme"><label>Television</label>

 <input type="radio" id="sme" name="sme"><label>Other</label>

 </div>

 <p>

 Would you like to be on our regular mailing list?

 </p>

 <div>

 <input id="sme" type="checkbox" required><label>Yes, We love Junk E-

mails</label>

 </div>

 <div class="line" id="line">

 </div>

 <div>

 <button class="btn" id="a" type="reset">Reset</button><button

class="btn" id="b" type="submit">Send it In!</button>

 </div>

 </div>

</body>

187

Output:

Q.7 Create HTML documents (having multiple frames) in the following

formats:

 Frame1:

Frame1

Frame2

 Frame2:

Frame1

Frame2 Frame3

188

Frame1: Program:

Frame1.html

<html>

 <head>

 <title>FirstPage</title>

 </head>

 <body>

 <center><h1>Frame 1</h1></center>

 </body>

</html>

Frame2.html

<html>

 <head>

 <title>FirstPage</title>

 </head>

 <body>

 <center><h1>Frame 2</h1></center>

 </body>

</html>

Frameset.html

<frameset rows="50%,50%">

189

 <frame src="frame1.html">

 <frame src="frame2.html" >

</frameset>

Frame1: Output:

Frame2: Program:

Frame3.html

<html>

 <head>

 <title>FirstPage</title>

 </head>

 <body>

 <center><h1>Frame 3</h1></center>

 </body>

</html>

190

Frameset2.html

<frameset rows="50%,50%">

<frame src="frame1.html">

 <frameset cols="50%,50%">

 <frame src="frame2.html" >

 <frame src="frame3.html" >

 </frameset>

 </frameset>

Frame2: Output:

191

GE4P: PROGRAMMING IN PYTHON

LABORATORY MANUAL

(Course: GE-4)

192

1. Using for loop, print a table of Celsius/Fahrenheit equivalences. Let c

be the Celsius temperatures ranging from 0 to 100, for each value of

c, print the corresponding Fahrenheit temperature.

Program:

for c in range(0, 101):

 f = (c * 9/5) + 32

 print("Celsius:", c, " Fahrenheit:", f)

 #print(f"Celsius: {c} \t Fahrenheit: {f}")

 Input and Output Section:

Celsius: 0 Fahrenheit: 32.0

Celsius: 1 Fahrenheit: 33.8

Celsius: 2 Fahrenheit: 35.6

Celsius: 3 Fahrenheit: 37.4

Celsius: 4 Fahrenheit: 39.2

Celsius: 5 Fahrenheit: 41.0

Celsius: 6 Fahrenheit: 42.8

Celsius: 7 Fahrenheit: 44.6

Celsius: 8 Fahrenheit: 46.4

Celsius: 9 Fahrenheit: 48.2

Celsius: 10 Fahrenheit: 50.0

Celsius: 11 Fahrenheit: 51.8

Celsius: 12 Fahrenheit: 53.6

Celsius: 13 Fahrenheit: 55.4

Celsius: 14 Fahrenheit: 57.2

Celsius: 15 Fahrenheit: 59.0

Celsius: 16 Fahrenheit: 60.8

Celsius: 17 Fahrenheit: 62.6

Celsius: 18 Fahrenheit: 64.4

Celsius: 19 Fahrenheit: 66.2

Celsius: 20 Fahrenheit: 68.0

Celsius: 21 Fahrenheit: 69.8

Celsius: 22 Fahrenheit: 71.6

Celsius: 23 Fahrenheit: 73.4

Celsius: 24 Fahrenheit: 75.2

Celsius: 25 Fahrenheit: 77.0

Celsius: 26 Fahrenheit: 78.8

193

Celsius: 27 Fahrenheit: 80.6

Celsius: 28 Fahrenheit: 82.4

Celsius: 29 Fahrenheit: 84.2

Celsius: 30 Fahrenheit: 86.0

Celsius: 31 Fahrenheit: 87.8

Celsius: 32 Fahrenheit: 89.6

Celsius: 33 Fahrenheit: 91.4

Celsius: 34 Fahrenheit: 93.2

Celsius: 35 Fahrenheit: 95.0

Celsius: 36 Fahrenheit: 96.8

Celsius: 37 Fahrenheit: 98.6

Celsius: 38 Fahrenheit: 100.4

Celsius: 39 Fahrenheit: 102.2

Celsius: 40 Fahrenheit: 104.0

Celsius: 41 Fahrenheit: 105.8

Celsius: 42 Fahrenheit: 107.6

Celsius: 43 Fahrenheit: 109.4

Celsius: 44 Fahrenheit: 111.2

Celsius: 45 Fahrenheit: 113.0

Celsius: 46 Fahrenheit: 114.8

Celsius: 47 Fahrenheit: 116.6

Celsius: 48 Fahrenheit: 118.4

Celsius: 49 Fahrenheit: 120.2

Celsius: 50 Fahrenheit: 122.0

Celsius: 51 Fahrenheit: 123.8

Celsius: 52 Fahrenheit: 125.6

Celsius: 53 Fahrenheit: 127.4

Celsius: 54 Fahrenheit: 129.2

Celsius: 55 Fahrenheit: 131.0

Celsius: 56 Fahrenheit: 132.8

Celsius: 57 Fahrenheit: 134.6

Celsius: 58 Fahrenheit: 136.4

Celsius: 59 Fahrenheit: 138.2

Celsius: 60 Fahrenheit: 140.0

Celsius: 61 Fahrenheit: 141.8

Celsius: 62 Fahrenheit: 143.6

Celsius: 63 Fahrenheit: 145.4

Celsius: 64 Fahrenheit: 147.2

Celsius: 65 Fahrenheit: 149.0

Celsius: 66 Fahrenheit: 150.8

194

Celsius: 67 Fahrenheit: 152.6

Celsius: 68 Fahrenheit: 154.4

Celsius: 69 Fahrenheit: 156.2

Celsius: 70 Fahrenheit: 158.0

Celsius: 71 Fahrenheit: 159.8

Celsius: 72 Fahrenheit: 161.6

Celsius: 73 Fahrenheit: 163.4

Celsius: 74 Fahrenheit: 165.2

Celsius: 75 Fahrenheit: 167.0

Celsius: 76 Fahrenheit: 168.8

Celsius: 77 Fahrenheit: 170.6

Celsius: 78 Fahrenheit: 172.4

Celsius: 79 Fahrenheit: 174.2

Celsius: 80 Fahrenheit: 176.0

Celsius: 81 Fahrenheit: 177.8

Celsius: 82 Fahrenheit: 179.6

Celsius: 83 Fahrenheit: 181.4

Celsius: 84 Fahrenheit: 183.2

Celsius: 85 Fahrenheit: 185.0

Celsius: 86 Fahrenheit: 186.8

Celsius: 87 Fahrenheit: 188.6

Celsius: 88 Fahrenheit: 190.4

Celsius: 89 Fahrenheit: 192.2

Celsius: 90 Fahrenheit: 194.0

Celsius: 91 Fahrenheit: 195.8

Celsius: 92 Fahrenheit: 197.6

Celsius: 93 Fahrenheit: 199.4

Celsius: 94 Fahrenheit: 201.2

Celsius: 95 Fahrenheit: 203.0

Celsius: 96 Fahrenheit: 204.8

Celsius: 97 Fahrenheit: 206.6

Celsius: 98 Fahrenheit: 208.4

Celsius: 99 Fahrenheit: 210.2

Celsius: 100 Fahrenheit: 212.0

2. Using while loop, produce a table of sins, cosines, and tangents. Make

a variable x in range from 0 to 10 in steps of 0.2. For each value of x,

print the value of sin(x), cos(x) and tan(x).

Program:

195

import math

x = 0.0

while x <= 10:

 sin_value = math.sin(x)

 cos_value = math.cos(x)

 tan_value = math.tan(x)

 print("x: ", x, "sin(x): ", sin_value, "cos(x): ", cos_value, "tan(x): ",

tan_value,)

 x += 0.2

Input and Output Section:

x: 0.0 sin(x): 0.0 cos(x): 1.0 tan(x): 0.0

x: 0.2 sin(x): 0.19866933079506122 cos(x): 0.9800665778412416 tan(x):

0.2027100355086725

x: 0.4 sin(x): 0.3894183423086505 cos(x): 0.9210609940028851 tan(x):

0.4227932187381618

x: 0.6 sin(x): 0.5646424733950355 cos(x): 0.8253356149096782 tan(x):

0.6841368083416924

x: 0.8 sin(x): 0.7173560908995228 cos(x): 0.6967067093471654 tan(x):

1.0296385570503641

x: 1.0 sin(x): 0.8414709848078965 cos(x): 0.5403023058681398 tan(x):

1.5574077246549023

x: 1.2 sin(x): 0.9320390859672263 cos(x): 0.3623577544766736 tan(x):

2.5721516221263188

x: 1.4 sin(x): 0.9854497299884601 cos(x): 0.16996714290024104 tan(x):

5.797883715482887

x: 1.6 sin(x): 0.9995736030415052 cos(x): -0.029199522301288593 tan(x):

-34.23253273555758

x: 1.8 sin(x): 0.9738476308781953 cos(x): -0.2272020946930869 tan(x): -

4.286261674628067

x: 2.0 sin(x): 0.9092974268256818 cos(x): -0.4161468365471422 tan(x): -

2.18503986326152

x: 2.2 sin(x): 0.8084964038195903 cos(x): -0.5885011172553455 tan(x): -

1.373823056768796

x: 2.4 sin(x): 0.675463180551151 cos(x): -0.7373937155412454 tan(x): -

0.9160142896734107

x: 2.6 sin(x): 0.5155013718214642 cos(x): -0.8568887533689473 tan(x): -

0.6015966130897586

196

x: 2.8 sin(x): 0.33498815015590466 cos(x): -0.9422223406686583 tan(x):

-0.3555298316511756

x: 3.0 sin(x): 0.14112000805986677 cos(x): -0.9899924966004455 tan(x):

-0.14254654307427736

x: 3.2 sin(x): -0.05837414342758053 cos(x): -0.998294775794753 tan(x):

0.05847385445957909

x: 3.4 sin(x): -0.2555411020268321 cos(x): -0.9667981925794609 tan(x):

0.2643169008674261

x: 3.6 sin(x): -0.44252044329485324 cos(x): -0.8967584163341465 tan(x):

0.49346672998490493

x: 3.8 sin(x): -0.61185789094272 cos(x): -0.790967711914416 tan(x):

0.7735560905031279

x: 4.0 sin(x): -0.7568024953079288 cos(x): -0.6536436208636113 tan(x):

1.1578212823495797

x: 4.2 sin(x): -0.8715757724135886 cos(x): -0.49026082134069865 tan(x):

1.7777797745088455

x: 4.4 sin(x): -0.9516020738895163 cos(x): -0.3073328699784185 tan(x):

3.096323780649755

x: 4.6 sin(x): -0.9936910036334646 cos(x): -0.1121525269350531 tan(x):

8.860174895648187

x: 4.8 sin(x): -0.9961646088358406 cos(x): 0.08749898343944816 tan(x):

-11.38487065424269

x: 5.0 sin(x): -0.958924274663138 cos(x): 0.28366218546322797 tan(x): -

3.3805150062465636

x: 5.2 sin(x): -0.8834546557201524 cos(x): 0.46851667130037866 tan(x):

-1.8856418775197559

x: 5.4 sin(x): -0.772764487555986 cos(x): 0.634692875942636 tan(x): -

1.2175408246205508

x: 5.6 sin(x): -0.6312666378723195 cos(x): 0.7755658785102513 tan(x): -

0.8139432836896983

x: 5.8 sin(x): -0.46460217941375503 cos(x): 0.8855195169413201 tan(x):

-0.5246662219467968

x: 6.0 sin(x): -0.2794154981989233 cos(x): 0.9601702866503667 tan(x): -

0.29100619138474626

x: 6.2 sin(x): -0.08308940281749375 cos(x): 0.9965420970232177 tan(x):

-0.08337771486592593

x: 6.4 sin(x): 0.11654920485049629 cos(x): 0.9931849187581923 tan(x):

0.1173489474610842

x: 6.6 sin(x): 0.3115413635133812 cos(x): 0.9502325919585285 tan(x):

0.3278580067131374

197

x: 6.8 sin(x): 0.49411335113861127 cos(x): 0.8693974903498235 tan(x):

0.568339978690061

x: 7.0 sin(x): 0.6569865987187917 cos(x): 0.7539022543433023 tan(x):

0.871447982724325

x: 7.2 sin(x): 0.7936678638491553 cos(x): 0.6083513145322517 tan(x):

1.3046209400556479

x: 7.4 sin(x): 0.8987080958116285 cos(x): 0.43854732757438714 tan(x):

2.049284169128104

x: 7.6 sin(x): 0.9679196720314874 cos(x): 0.2512598425822514 tan(x):

3.852265694684709

x: 7.8 sin(x): 0.9985433453746052 cos(x): 0.053955420562645316 tan(x):

18.506821649462253

x: 8.0 sin(x): 0.9893582466233812 cos(x): -0.14550003380861704 tan(x):

-6.799711455220211

x: 8.2 sin(x): 0.9407305566797719 cos(x): -0.3391548609838379 tan(x): -

2.77374929538339

x: 8.4 sin(x): 0.8545989080882795 cos(x): -0.5192886541166871 tan(x): -

1.6457107262278954

x: 8.6 sin(x): 0.7343970978741122 cos(x): -0.6787200473200137 tan(x): -

1.0820324237864258

x: 8.8 sin(x): 0.5849171928917617 cos(x): -0.811093014061656 tan(x): -

0.7211468755756028

x: 9.0 sin(x): 0.4121184852417566 cos(x): -0.9111302618846769 tan(x): -

0.45231565944180985

x: 9.2 sin(x): 0.22288991410024764 cos(x): -0.9748436214041636 tan(x):

-0.22864171155902654

x: 9.4 sin(x): 0.02477542545335954 cos(x): -0.9996930420352065 tan(x):

-0.024783032802670062

x: 9.6 sin(x): -0.17432678122297787 cos(x): -0.9846878557941273 tan(x):

0.17703760658486795

x: 9.8 sin(x): -0.3664791292519251 cos(x): -0.9304262721047546 tan(x):

0.3938830407517384

x: 10.0 sin(x): -0.5440211108893668 cos(x): -0.8390715290764544 tan(x):

0.6483608274590816

3. Write a program that reads an integer value and prints a year is leap

year or not.

Program:

Year = int(input("Enter the number: "))

198

if((Year % 400 == 0) or

 (Year % 100 != 0) and

 (Year % 4 == 0)):

 print("Given Year is a leap Year");

else:

 print ("Given Year is not a leap Year")

Input and Output Section:

Enter the number: 1900

Given Year is not a leap Year

Enter the number: 2000

Given Year is a leap Year

4. Write a program that takes a positive integer n and then produces

n lines of output shown as follows. For example, enter a size: 5

*

**

Program:

rows = int(input("Enter number of rows: "))

for i in range(rows):

 for j in range(i+1):

 print("* ", end="")

 print("\n")

Input and Output Section:

 Enter number of rows: 5

*

* *

* * *

* * * *

 * * * * *

5. Write a function that takes an integer ‘n‘ as input and calculates the

value of 1 + 1/1! + 1/2! + 1/3! + … + 1/n

Program:

def series(n):

199

 sum = 0

 fact = 1

 for i in range(1, n + 1):

 # Update factorial

 fact *= i

 # Update series sum

 sum += 1.0/fact

 print(sum)

Driver program to test above functions

n = int(input("Enter the value of n: "))

series(n)

Input and Output Section:

Enter the value of n: 5

1.7166666666666668

Enter the value of n: 3

1.6666666666666667

6. Write a function that takes an integer input and calculates the factorial

of that number.

Program:

def factorial(n):

 if n == 0 or n == 1:

 return 1

 else:

 fact = 1

 while(n > 1):

 fact *= n

 n -= 1

 return fact

Driver Code

num = int(input("Enter the number: "))

if (num<0):

200

 print("Factorial does not exist for negative numbers")

else:

 print("Factorial of",num,"is",

 factorial(num))

Input and Output Section:

Enter the number: 5

Factorial of 5 is 120

Enter the number: 8

Factorial of 8 is 40320

7. Write a function that takes a string input and checks if it‘s a

palindrome or not.

Program:

def isPalindrome(str):

 # Run loop from 0 to len/2

 for i in range(0, int(len(str)/2)):

 if str[i] != str[len(str)-i-1]:

 return False

 return True

main function

s = input("Enter the string : ")

ans = isPalindrome(s)

if (ans):

 print("The given string is palindrome")

else:

 print("The given string is not palindrome")

Input and Output Section:

Enter the string : madam

The given string is palindrome

Enter the string : college

The given string is not palindrome

201

8. Write a list function to convert a string into a list, as in list (‘abc‘) gives

[a, b, c].

Program:

def Convert(string):

 li = list(string.split(" "))

 return li

Driver code

str1 = "Midnapore City College"

print(Convert(str1))

Input and Output Section:

['Midnapore', 'City', 'College']

9. Write a program to generate Fibonacci series.

Program:

nterms = int(input("Enter the value of n: "))

first two terms

n1, n2 = 0, 1

count = 0

check if the number of terms is valid

if nterms <= 0:

 print("Please enter a positive integer")

if there is only one term, return n1

elif nterms == 1:

 print("Fibonacci sequence upto",nterms,":")

 print(n1)

generate fibonacci sequence

else:

 print("Fibonacci sequence:")

 while count < nterms:

 print(n1)

 nth = n1 + n2

202

 # update values

 n1 = n2

 n2 = nth

Input and Output Section:

Enter the value of n: 5

Fibonacci sequence:

0

1

1

2

3

10. Write a program to check whether the input number is even or odd.

Program:

num = int(input("Enter a number: "))

if (num % 2) == 0:

 print("The given number is even")

else:

 print("The given number is odd")

Input and Output Section:

Enter a number: 12

The given number is even

Enter a number: 21

The given number is odd

11. Write a program to compare three numbers and print the largest one

Program:

num1 = int(input("Enter first number: "))

num2 = int(input("Enter second number: "))

num3 = int(input("Enter third number: "))

if (num1 >= num2) and (num1 >= num3):

 largest = num1

203

elif (num2 >= num1) and (num2 >= num3):

 largest = num2

else:

 largest = num3

print("The largest number is", largest)

Input and Output Section:

Enter first number: 31

Enter second number: 53

Enter third number: 42

The largest number is 53

12. Write a program to print factors of a given number.

Program:

n = int(input("Enter the value of n: "))

print("The factors of",n,"are:")

for x in range (1,n+1):

 if n%x==0:

 print(x , end=' ')

Input and Output Section:

Enter the value of n: 120

The factors of 120 are:

1 2 3 4 5 6 8 10 12 15 20 24 30 40 60 120

13. Write a method to calculate GCD of two numbers.

Program:

num1 = int(input("Enter the 1st number: "))

num2 = int(input("Enter the 2nd number: "))

gcd = 1

for i in range(1, min(num1, num2)+1):

 if num1 % i == 0 and num2 % i == 0:

 gcd = i

print("GCD of", num1, "and", num2, "is", gcd)

204

Input and Output Section:

Enter the 1st number: 36

Enter the 2nd number: 60

GCD of 36 and 60 is 12

14. Write a program to create Stack Class and implement all its methods.

(Use Lists)

Program:

Initializing a stack

stack = []

append() function to push

element in the stack

stack.append('B')

stack.append('C')

stack.append('A')

print('Initial stack')

print(stack)

pop() function to pop

element from stack in

LIFO order

print('\nElements popped from stack:')

print(stack.pop())

print(stack.pop())

print(stack.pop())

print('\nStack after elements are popped:')

print(stack)

Input and Output Section:

Initial stack

['B', 'C', 'A']

Elements popped from stack:

A

205

C

B

Stack after elements are popped:

[]

15. Write a program to create Queue Class and implement all its methods.

(Use Lists)

Program:

Initializing a queue

queue = []

Adding elements to the queue

queue.append('A')

queue.append('B')

queue.append('C')

print("Initial queue")

print(queue)

Removing elements from the queue

print("\nElements dequeued from queue")

print(queue.pop(0))

print(queue.pop(0))

print(queue.pop(0))

print("\nQueue after removing elements")

print(queue)

Input and Output Section:

Initial queue

['A', 'B', 'C']

Elements dequeued from queue

A

B

C

Queue after removing elements

206

[]

16. Write a program to implement linear and binary search on lists.

Program for linear search:

def search(List, n):

 for i in range(len(List)):

 if List[i] == n:

 return i

 return -1

list which contains both string and numbers.

List = [1, 2, 'mcc', 4, 'bca', 6]

Driver Code

n = 'mcc'

res = search(List, n)

if (res==-1):

 print("Element not found")

else:

 print("Element found at index: ", res)

Input and Output Section:

Element found at index: 2

Program for binary search:

def binary_search(arr, x):

 low = 0

 high = len(arr) - 1

 mid = 0

 while low <= high:

 mid = (high + low) // 2

 # If x is greater, ignore left half

 if arr[mid] < x:

 low = mid + 1

207

 # If x is smaller, ignore right half

 elif arr[mid] > x:

 high = mid - 1

 # means x is present at mid

 else:

 return mid

 # If we reach here, then the element was not present

 return -1

Test array

arr = [2, 3, 4, 10, 40]

x = int(input("Enter the number to be search: "))

Function call

result = binary_search(arr, x)

if result != -1:

 print("Element is present at index", str(result))

else:

 print("Element is not present in array")

Input and Output Section:

Enter the number to be search: 10

Element is present at index 3

17. Write a program to sort a list using insertion sort and bubble sort and

selection sort.

Program:

def bubble_sort(arr):

 n = len(arr)

 for i in range(n):

 for j in range(n - i - 1):

 if arr[j] > arr[j + 1]:

 arr[j], arr[j + 1] = arr[j + 1], arr[j]

208

def selection_sort(arr):

 n = len(arr)

 for i in range(n):

 min_index = i

 for j in range(i + 1, n):

 if arr[j] < arr[min_index]:

 min_index = j

 arr[i], arr[min_index] = arr[min_index], arr[i]

def insertion_sort(arr):

 n = len(arr)

 for i in range(1, n):

 key = arr[i]

 j = i - 1

 while j >= 0 and arr[j] > key:

 arr[j + 1] = arr[j]

 j -= 1

 arr[j + 1] = key

data=[]

n=int(input("Number of elements in array:"))

for i in range(0,n):

 l=int(input())

 data.append(l)

bubble_sort(data)

print('Sorted Array in Ascending Order using bubble sort:')

print(data)

selection_sort(data)

print('Sorted Array in Ascending Order using selection sort:')

print(data)

insertion_sort(data)

print('Sorted Array in Ascending Order using insertion sort:')

print(data)

209

Input and Output Section:

Number of elements in array:5

5

7

3

9

2

Sorted Array in Ascending Order using bubble sort:

[2, 3, 5, 7, 9]

Sorted Array in Ascending Order using selection sort:

[2, 3, 5, 7, 9]

Sorted Array in Ascending Order using insertion sort:

[2, 3, 5, 7, 9]

